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THERMOVISCOELASTIC CHARACTERIZATION AND PREDICTIONS

OF KEVLAR/EPOXY COMPOSITE LAMINATES

( ABSTRACT )

This study consisted of two main parts, the thermoviscoelastic

characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina

and the development of a numerical procedure to predict the

viscoelastic response of any general laminate constructed from the

same material. The four orthotropic material properties, St1, $12 ,

$22, and Sss, were characterized by 20 minute static creep tests on

unidirectional ([0]8, [lO]s, and [90]is) lamina specimens. The Time-

Temperature-Superposition-Principle (TTSP) was used successfully to

accelerate the characterization process. A nonlinear constitutive

model was developed to describe the stress dependent viscoelastic

response for each of the material properties.

A new numerical procedure to predict long term laminate

properties from lamina properties (obtained experimentally) was

developed. Numerical instabilities and time constraints associated

with viscoelastic numerical techniques were discussed and solved. The

numerical procedure was incorporated into a user friendly

microcomputer program called Viscoelastic Composite Analysis Program

(VCAP), which is available for IBM 'PC' type computers. The program

was designed for ease of use and includes graphics, menus, help



messages, etc.

The final phase of the study involved testing actual laminates

constructed from the characterized material, Kevlar/epoxy, at various

temperature and load levels for 4 to 5 weeks. These results were then

compared with the VCAP program predictions to verify the testing

procedure (i.e., the applicability of TTSP in characterizing composite

materials) and to check the numerical procedure used in the program.

The actual tests and predictions agreed, within experimental error and

scatter, for all test cases which included I, 2, 3, and 4 fiber

direction laminates.

The end result of the study was the development and

validation of a user friendly microcomputer program that can be used

by design engineers in industry to predict thermoviscoelastic

properties of orthotropic composite materials.
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Chapter 1

INTRODUCTION

The use of laminated fiber reinforced plastic (FRP) composites in

today's world is increasing due to their light weight and high

strength. One dramatic example of their usefulness recently was the

Voyager aircraft, whose structure was composed of more than 90%

composite materials and was able to circle the globe without

refueling. However, one problem with polymer based composite

materials is that they exhibit time dependent structural properties,

such as creep. These time dependent or viscoelastic properties are

also adversely affected by elevated temperatures, high humidity and

long time spans. For the continued use of composite materials, and

for safety reasons, these properties must be better understood and a

reliable method to predict long term laminate creep needs to be

developed.

There are two major difficulties in understanding and predicting

long term properties of FRP composite materials. The first and most

obviou_ problem in characterizing and modeling long term material

behavior is the length of time necessary to perform the tests. This

problem is magnified for FRP composites since they are generally

anisotropic requiring the determination of more material constants

than the usual two for isotropic materials. In order to minimize the

test time length, acceleration techniques have been developed, such as



the Time-Temperature-Superposition-Principle which relates time and

temperature but such procedures are not without problems and

difficulties.

The second problem relates to the infinite number of possible

laminates that can be constructed from the same basic unidirectional

lamina since the individual plies are free to be stacked and oriented

in any manner. As a result, each particular laminate will have an

unique set of viscoelastic properties, even though the fiber and

matrix materials are the same. Therefore, some method of predicting

properties, without actually physically testing each possible

laminate, is needed to aid the designer of composite materials and

reduce testing complexity.

While progress has been made in the last ten years in

understanding the viscoelasticity of FRP composites, there are still

many unanswered questions that this study addresses. First, this

study fully characterized the thermoviscoelastic properties of a FRP

composite material composed of Kevlar 49 fibers and Fiberite 7714A

epoxy with a cure temperature of 121 ° C (250 ° F). One reason for

examining a Kevlar based composite system is that the fibers as well

as the epoxy are viscoelastic as opposed to the graphite/epoxy systems

where the fibers are time-independent or non-viscoelastic. The

characterization tests were performed at various tempe6ature levels in

order to accelerate the characterization process and to better

understand the thermal effects. Nonlinear stress effects were also

included in the characterization. This portion of the study also



included the development of constitutive models that describe the

viscoelastic response so that they could be used in a numerical

proced,m_e.

The second major portion of this study involved the development

of a numerical procedure to predict the laminate response once the

lamina is thermoviscoelastically characterized. This new procedure

overcomes the stability and time of calculation problems present in

the current numerical methods. An important aspect of this study was

the development of a self-contained microcomputer-based program that

encompasses this numerical procedure. This was done to facilitate the

use of the by program design engineers in industry who require

computer programs to be transportable, inexpensive to operate, support

graphics and user friendly, all of which can only be accomplished with

a microcomputer based program.

The three step process of characterizing the lamina, developing

long term compliance models, and using a numerical procedure to

predict the laminate response is diagrammed in Fig. I.I. The final

part of this study was the validation of this characterization process

and numerical procedures by testing actual laminates and comparing

them with the program prediction. The prediction and tests agreed

well for all laminate types and temperature levels tested.

Previous Efforts

Even though the elastic properties of FRP composite laminates are

fairly well understood, the viscoelastic properties are still unknown
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for most composite systems. Only in the last ten to twenty years has

any major effort been expended to understand the viscoelasticity of

polymeric based composite materials. Early research in this area drew

heavily on the work done on polymer materials [I-8,14,15]. Since FRP

composite materials are organic polymeric materials, many of the

polymer viscoelasticity concepts are applicable, however, the theories

had to be generalized and modified to account for the anisotropic and

nonhomogeneous nature of composites. New testing techniques were also

needed for characterizing FRP composites to reduce the testing time

and to account for their anisotropic nature.

There are various methods to characterize a material for

viscoelastic properties such as creep tests, stress relaxation tests,

dynamic mechanical testing, etc. [9-18]. Through these tests, an

understanding about the time dependent compliance and modulus can be

obtained for the material property desired. For example, the time

dependent compliance can be determined from a creep test since the

load, which is constant, is known and the strain can be recorded at

various times. For an isotropic material only two independent

variables are needed, such as Young's modulus and the shear modulus,

but an orthotropic material has nine independent variables [19-22].

These nine variables can be reduced to four if one considers only a

two dimensional plane and assumes a plane state of stress. This is

acceptable since most FRP composites are made from thin lamina sheets

and the loading is generally in-plane loads. However, for a complete

characterization of an orthotropic composite, all nine variables
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should be determined. From a practical standpoint, this maybe quite

difficult.

One problem with viscoelasticity for any type of material is how

to represent the compliance or modulus functions. A great deal of

work has been spent to derive models that will accurately describe the

viscoelastic response. One of the simplest and still the most widely

used models is the power law for the compliance function. For linear

viscoelasticity, this model requires only three parameters to be

determined from test data (five for nonlinear viscoelasticity), which

makes it easy to implement and use. The power law was used by Findley

[23-28] to successfully describe compliance of various laminated

materials, such as asbestos, rayon, canvas, polyethylene, polystyrene,

for both linear and nonlinear viscoelasticity. He used hyperbolic

sine functions to represent two of the three parameters to describe

the nonlinear stress aspects of creep.

Another commonlyused model is an integral equation method which

was developed by Schapery [33,34]. This model is based on

thermodynamics and has been shown to describe the viscoelastic

response of composite materials very accurately [29-32,3S,36]. One

draw back with this model is the seven parameters that need to be

determined from experimental data, dictating a large number of tests.

In addition to the integral model, Schapery has contributed to the

understanding of the experimental as well as the theoretical aspects

of composite viscoelasticity. He has generated a tremendous amount of

test data on various composite systems. Along with the data he has
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given insights on test methods and techniques, plus an understanding

of the data and how to fit it to various viscoelastic models.

Other models include fractional exponents and a general power law

[12,37-39]. Both of these hold promise since they can describe a

secondary plateau, or rubbery region, which polymeric materials

exhibit. Free volume based theories have also been used and have

great future promise, especially for polymeric composites [40-43].

Adams, et al, [44-46] has also done extensive experimental and

theoretical work in composite viscoelasticity. They showed that one

could characterize the resin and fiber separately and then predict

unidirectional lamina properties through the use of a finite element

computer program [47]. However the results where limited to only

predicting lamina properties and no effort was made to predict

laminate properties.

Other noteworthy contributions to the understanding of FRP

composite viscoelasticity are Crossman, et al, and Weisman, et al.

They both have done experimental as well as analytical work. Crossman

[48-51] has done a large amount of work in characterizing linear

viscoelastic properties of composites in adverse temperature and

humidity environments. He has shown that humidity can be used to

accelerate the testing process of some FRP composites. Humidity shift

factors can be calculated and master curves developed similar to

temperature derived master curve. Weisman [52-56] has extensively

investigated the thermoviscoelastic response of FM-73 adhesive and

also has examined humidity and damage aspects of composite
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viscoelasticity. There has been and still is a large effort in Europe

[38-39,57-58] and in Russia [12,59-71] to understand composite

viscoelasticity.

At Virginia Polytechnic Institute and State University a large

effort has also been expended in characterizing viscoelastic

properties of composite materials under the guidance of Brinson

[72-82]. The work started with Yeow [72] who looked at the T300/934

graphite/epoxy fiber reinforced composite system. He used temperature

to accelerate the testing and then used the Time-Temperature-

Superposition-Principle (TTSP) to obtain master curves for

unidirectional material. By this method he was able to obtain creep

compliance curves for over 25 decades of time from short term (16

minute) creep tests. His shifted curves correlated fairly well with

25 hour creep tests that were performed to verify the master curves.

The master curves were for the transverse ($22) and shear (Sss)

compliance terms. The fiber direction (S ) and the coupling term
II

($12) compliance were found to be only elastic or time-independent.

He also formulated a method to predict rupture times for laminated

composites and developed a numerical method to predict the

stress-strain response of composites.

Criffith [73] later continued pursuing this idea of predicting

the viscoelastic properties of fiber reinforced plastic laminate by

using the TTSP. He showed that the stress and temperature could both

be used as shifting parameters to generate master curves. He

proceeded to generate the transverse (S ) and shear (S ) compliance
22 66



master curves for the same composite system, T300/934. These master

curves were used to predict the compliance of various off-axls lamina

samples and then were compared to actual long term tests on those

samples. The agreement was fairly good for unidirectional cases but

no work was done for predicting laminate compliances. Time-to-failure

predictions were also performed using a modified kinetic rate theory.

Continuing this work at VPI&SU was Dillard [74,77,78,81] who also

studied the T300/934 graphite/epoxy system. Using the creep test data

obtained by Griffith, he characterized and modeled the nonlinear

time-dependent properties for the S and S terms. He used the
22 68

Findley Power Law model to describe the S and S terms. The S
22 88 11

and $12 terms were assumed time-independent. Based on the previous

work of Yeow [72], he developed a numerical procedure that would

predict the creep, stresses, strains and time-to-failure of a general

laminate constructed from T300/934 material at 160 ° C (320 ° F). In

some cases the agreement was good but in others (most noticeably for

laminates constructed with three or more layers at different fiber

angles) the predicted compliance would deviate from the actual test

results. Creep rupture predictions were also made for various

laminates with limited success. Although the TTSP was not used, it

was shown that laminate viscoelastic properties can be predicted at a

particular temperature if the lamina properties are well characterized

at that temperature.

Later work by Turtle [7S,79] showed that the T300/S208

graphite/epoxy system could also be characterized at a certain
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temperature and then by a numerical procedure the laminate

viscoelastic properties could be predicted. This showed that the

characterization and prediction method for laminate properties

developed previously can be used for different composite systems. One

notable difference in his characterization process was the use of the

Schapery integral to describe the nonlinear compliance of the S and
22

$66 terms (the Stl and $12 terms were once again assumed

time-independent). He also showed that the power law exponent used in

most creep models is very sensitive and long term predictions could

contain large errors since the error grows exponentially in time.

Heil [76], while working at VPIS_U continued this investigation

into the understanding of viscoelasticity of composite materials. He

examined T300/934 graphite/epoxy and generated long term creep

characteristics as a function of stress and temperature levels. He

also looked in detail at the resin system and tried to infer certain

characteristics of the unidirectional lamina properties. He used the

Schapery integral approach to model the S and S compliance terms.
22 66

He also compared laminate predictions to actual tests.

Overview of Current Study

The first phase of the current research was the characterization

of the Kevlar 49/Fiberite 7714A epoxy composite system for

thermoviscoelastic properties. This particular composite system was

examined since the fibers and epoxy are both viscoelastic and

therefore all material properties are time dependent, and also because
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of its increased use in industry. Three basic specimen types,

unidirectional 0° I0° and 900 coupons, were used to determine the four

orthotropic compliance matrix terms ($11, $12, $22, and See) by means

of static creep tests. All terms were found to be both temperature

and stress dependent [58,83-84], which required that each material

property be tested at various temperature levels _undstress levels.

Due to the vast number of possible tests needed to completely

characterize each compliance term, specimens were reused where

possible. The TTSPwas used to develop master curves for each of the

compliance terms in order to obtain long term results.

Constitutive models were then developed from the test data for

each of the four compliance matrix terms ($11, $12 , $22 , and Sse) that

describes both linear and nonlinear temperature and stress effects.

While various established models such as the Findley power law,

Schapery integral equation, partial fraction equation, or the

generalized power law, were examined a new model called the quadratic

nonlinear power law was developed and used in this study. Various

nonlinear stress parameters, such as the octahedral shear stress, were

also examined for use in the constitutive model.

One of the principle objectives of the research performed in this

study was the development of a computer aided engineering (CAE)

program for use by design engineers in industry for designing

composites structures with viscoelastic response. The experiments

performed were aimed at developing and testing this program. The

models developed for the compliance matrix terms from the experimental
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data, were integrated into a new computer program to predict laminate

properties. This program overcomes the problems and restrictions,

such as numerical instabilities, restrictions on time step size,

difficulty in user operation, temperature range, that plagued the

VISLAP program developed by Dillard [85-91].

The new program, Viscoelastic Composite Analysis Program (VCAP),

was designed to run on a 'PC' or compatible microcomputer to

facilitate ease of use, to reduce operation costs and to increase the

portability of the program from computer to computer. The program was

written in the PASCAL programming language for its graphics ability,

ease of programming, portability to many computers, and modular

programming style which aids maintenance and later addition of more

options. Extensive use of user interface aids such as menu screens,

graphics, and error help messages were included to make the program

user friendly. The program allows the operator to use models and

material systems other than the Kevlar/epoxy system characterized in

this study. In addition to the VCAP program, data reduction, curve

fitting and curve shifting programs were also developed to aid others

in analyzing creep and creep recovery tests to characterize their own

material systems.

The final phase of the study involved testing actual laminates

constructed from the characterized material, Kevlar/epoxy, at various

temperature and load levels. These results were then compared with

the VCAP program predictions to verify the testing procedure (i.e.,

the applicability of TTSP in characterizing composite materials) and
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to check the numerical procedure used in the program. The actual

tests and predictions agreed well for all test cases which included I,

2, 3, and 4 fiber direction laminates.

Other subjects associated with viscoelastic characterization and

testing procedures were also investigated. These include examining

the 'fiber truss' effect, mechanical conditioning, and temperature

conditioning.

Summary

In summary the purpose of this research was to obtain a better

understanding of the viscoelastic response of Kevlar/epoxy laminates

under various temperature and loading conditions. The end result is a

microcomputer based computer program to predict the time-dependent

stresses and strains of any polymeric composite laminate. Other

benefits of this research is a comprehensive test method of nonlinear

characterization of composites for various stress and temperature

levels.

The basic procedure followed in this research was first,

unidirectional specimens were tested at various temperature and load

levels. Second, nonlinear constitutive models were developed for an

orthotropic material that included both temperature and stress

effects. Thlrd, a microcomputer program was developed to predict

laminate viscoelastic properties. And fourth, the testing procedure

and program was validated with actual creep tests on laminates.



Chapter 2

BACKGROUND INFORMATION

Various basic subjects regarding composites and viscoelasticity

are reviewed and special terminology used in this study are defined.

The subjects covered are the analysis and terminology of orthotropic

materials, experimental methods to determine the compliance matrix of

orthotropic materials, linear and

viscoelastic constitutive models,

Superposition-Principle (TTSP).

nonlinear viscoelasticity

and the Time-Temperature-

Composite Orthotropic Materials

Fiber reinforced plastic (FRP)

constructed from two different materials,

composite materials are

long or short fibers and

resin. The particular composite system of interest in this study is

made with long continuous fiber that are relatively stiff and strong

when compared to the resin. When these fibers are oriented in a

single direction within a resin matrix, they are referred to as an

'unidirectional lamina'. Although the thickness of a lamina can be

any size, it is generally only 0. I - 0.2 mm thick due to processing

constraints. The real benefit of FRP composite materials is the

ability to combine unidirectional lamina layers together in any

direction to form a laminate structure. If all the layers are

oriented in a single direction then it is generally referred to as an

14
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unidirectional laminate, or just an unidirectional composite. The

unidirectional laminates used in this study to characterize the

material system were constructed with 8 or 16 unidirectional plies

(1.0 mm and 2.0 mm thick, respectively).

The most general material type classification for a

unidirectional composite is transversely isotropic which has five

independent material properties. However, since the thickness of FRP

composites is generally thin in comparison to the width and length

they are more conveniently classified as a two dimensional orthotropic

material with only four material properties. In general, for an

anisotropic material the elastic stress strain constitutive equations

can be _n_itten in tensor form as

c = S _ i,j,k,l = 1,2,3 (2.1)
iJ lJkl kl

e = strain tensor
l]

= stress tensor
kl

S = 81 term compliance tensor (only 21
lJkt

independent constants )

but for a two dimensional orthotropic unidirectional lamina with no

out-of-plane loads (_3 = _m3= _31= O) this will reduce to [19]

or

{}S S 0
11 12

S S 0
21 22

0 0 S
66 T12#

(2.2)

{e} = [s] {_}



16

where

c I, c2 = in-plane strains

Y12 = 2c12 = in-plane engineering shear strain

_i' 0"2 = in-plane normal stresses

T = in-plane shear stress
12

S = reduced compliance matrix

The reduced compliance matrix can be written in terms of the

engineering properties as

S = I/E
11 11

= S = -v /_ = -v/E21S12 21 12 11 22

S = I/E
22 22

S = I/G
66 12

(2.3a)

(2.3b)

(2.3c)

(2.3d)

where E and E are the stiffness or modulus in the fiber and
11 22

transverse J-" _"-azrec_zon, respectively, u and u are the Poisson's
12 21

ratios, and G is the shear modulus.
12 Similarly, the S is commonly

11

referred to as the fiber direction compliance, S as the
12

fiber/transverse coupling compliance, S as the transverse direction
22

compliance, and Se6 as the shear compliance.

The subscript numbers 1 and 2 used with the stresses and strains

refer to the local coordinates or the principal diFection of the

lamina with the I direction parallel with the fibers as illustrated in

Fig. 2. I. The global coordinate system uses the subscript letters x

and y for the laminate (or global) stresses and strains. This
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convention is well established in the composlte literature (although

not the only one) and will be used in this study.

Since laminates are constructed from plies at arbitrary

orientations it is necessary to relate the local and global coordinate

systems through transformation matrices. These relationships for

stress and strain are

{_} = [T ] {_} or {_} = [T ]-1 {_} (2.4)
12 1 xy xy 1 12

{_}12 : IT2] {C}xy or {_}xy [T2]-1 {e}12 (2.5)

where the transformation matrices are defined as

n mnJ n]ms[T1] = 2 2 2 m2m -2mn = -mn (2.6)

2 2 2 2
[-mn mn m -n _2mn 2mn m -n

where m = cos(e) and n = sin(O). Using Eqs. 2.2, 2.4 and 2.5, the

unrotated or local compliance matrix [S] can be transformed to the

rotated or global coordinates as

{e} = [T2]-1{e}12 = [Te]-I[S][T ]{{r} (2.7)
xy 1 xy

where [{] = [T ]-I[s][T ]
2 1

The bar above the S now signifies the global coordinate with the

subscript numbers 1,2 and 6 now representing the global coordinate

system. Written out in full, the rotated S is
lJ

= S m4 + (2S + Sss)m2n2 + S m4$11 11 12 2?- (2.8a)
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{ = S n4 + (2S + S )men 2 + S n4 (2.8b)
22 11 12 66 22

{ = { = S (m4 + n4) + (S + S - S )m2n 2 (2.8c)
12 21 12 11 22 66

3

.... + Sss)mn (2.8d){16 {61 (2Slt - 2S12 S66 )m3n + (2S12 2S22

= = - + S )rim 3 (2.8e)%6 {s2 (2S11 - 2S12 S66)n3m + (2S12 - 2S22 66

2 2 4

= + 2S - 4S - Ss6)m n + S (m4 + n ) (2.8f)6s 2(2Sl1 22 12 66

These rotated compliance terms will be used extensively in chapter 4

for developing the numerical procedure to predict the creep of any

general laminate.

The stress, strain or stiffness analysis of a laminate is more

conveniently done using the constitutive relations written in terms of

the reduced stiffness matrix

{_} = [Q]{c} (2.9)
12 12

where [q] = [S] -I and [01 = [5] -I

The advantage of using the stiffness matrices is that they can be

algebraically added, which cannot be done with the individual ply

compliance matrices, to produce the laminate stiffness, [A],

N

[A] = _ [_]k tk
k=1

(2.10)

where N is the total number of plies

[_]k is the laminate stiffness of the k th ply in global

coordinates
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tk is the thickness of the kth ply

The laminate stiffness matrix allows the laminate load or elastic

strains to be calculated, depending on which is initially known, by

or

{N} = [A]{c} e (2.11)
xy xy

{c} e = [A]-I{_} e (2.12)
xy xy

Once the laminate strains are known then the individual ply strains

can also be calculated by

where {e} t is the total laminate strain and {e}r is the residual
12 12

laminate strain in the local coordinate system of kth ply. The

residual strain can be regarded as any non-elastic strain such as

thermal, hygroscopic, or viscoelastic creep strains. The process

described above is commonly referred to as Classical Lamination Theory

(CLT) which is more fully examined in Refs. 19-21.

One major disadvantage in dealing with the reduced stiffness

matrix [Q] is viscoelastic creep is generally expressed in terms of

compliance. Therefore the compliance terms, $11, $12, $22, and See,

are functions of time which inhibits the direct inversion of the

compliance matrix to get the stiffness matrix which is used in

Eq. 2. I0 since they are not direct inverses of one another

([Q] * [S]-I). There are numerical methods available to convert from



2i

the time-dependent compliance to stiffness for linear systems but the

process is difficult to implement.

Numericai methods have been developed to solve the inversion

problem for composite materials by solving for the creep strains and

then treating them similar to thermal loads [74-75]. Chapter 3 will

examine these numerical procedures in more detail. The final solution

method to be used for this study will only rely on the reduced

compliance matrices.

Regardless of whether the stiffness or compliance form of the

material properties is used, there are certain assumptions inherent in

the CLT that should be noted. First, a given straight line normal to

the laminate surface will remain normal and straight after

deformation. This is referred to as the Kirchoff hypothesis. Second,

no out-of-plane loads are accounted for so that only in-plane or

bending loads are permitted. Lastly, CLT is a solution method for

point stresses and strains and does not account for free edge effects

which have been documented for the elastic case [19,20]. This study

examines the free edge effect for viscoelastic response in chapter 4.

Experimental Methods to Determine Creep Compliance

There are four compliance terms to be determined experimentally

to fully characterize a FRP composite, Sit, Si2, $22, and $66. The

most common method in determining the compliance is through the use of

resistance foil strain gages mounted on test specimens loaded under a

known stress. By knowing the strain and stress fields it is possible
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to calculate the compliance. Although other methods are available to

measure strain, such as extensometers and Moire interferometry, strain

gages still remain the most widely used method. Further details on

the actual strain measuring devices used in this study are discussed

in chapter 4.

The S is typically determined by loading unidirectional
11

laminate, [0] , in the fiber direction and measuring the axial strain
X

and obtaining $11 = v1/c1. Likewise, $22 can be calculated by

measuring the strain transverse to the fibers in a [90] specimen when
X

the specimen is loaded in the transverse direction, $22= v2/c2. The

$12 (=$21) is best determined by loading a [0] specimen in the fiber
X

direction and measuring the strains transverse to the fibers, giving

$12 = O'I/C 2. However, S could also be determined by loading a [90]
12 x

specimen in the transverse direction and recording the strains in the

=S :vJc.fiber direction, giving $12 21 1
The second method however

is impractical since the transverse direction is not strong enough to

withstand the stress levels, _, necessary to produce measurable c 1

strains due to the stiff fibers relative to the matrix.

The determination of S is more difficult and susceptible to
66

error than the other compliance terms. There have been numerous

studies, Yeow, et al [72], Brouwer [39], Pindera and Herakovich [93],

Pipes and Cole [92] to name a few, conducted on methods to determine

shear compliance of composite materials. One method that has received

wide use and acceptance is the 10° off-axis test proposed by Chamis

and Sinclair [94]. For most composite materials where S is a order
11
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of magnitude greater than the $22 and Sse, the shear strain, Yi2' when

normalized to the axial strain, e , is close to a maximum at I0° which
x

facilities accurate strain measurements. For Kevlar/epoxy, the

maximum is at approximately 9.0 ° as shown in Fig. 2.2. However the

I0° off-axis test is sensitive to misalignment of the strain gages or

load direction. To verify the reliability of the test for the

Kevlar/epoxy composite system used in this study, tests were performed

on 10 ° and 30 ° off-axis specimens. The results for both tests, shown

in Fig. 2.3, are nearly identical and confirms the usefulness of

off-axis tests for shear compliance.

The shear strain, _12' is measured by use of a three gage rosette

such as a rectangular or delta rosette strain gage. By knowing the

strains in three directions, the transformation matrices can be used

to back calculate YI2 and ultimately the shear compliance. This study

used the rectangular rosette type strain gage mounted in the 0°

direction as shown in Fig. 2.4. Using Eg. 2.4 the shear strain in the

local coordinate system can be written in terms of the global strains

_12 = (Ey- ex)sin(2e) + _xyCOS(2e)
(2.14}

Similarly, the actual gage strains can be expressed in terms of the

global coordinate system giving

x g2

C : E - E + E
y gl g2 g3

xy gl g3

(2.15a)

(2.15b)

(2.15c)
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where c e and _ are the strains in gages I, 2 and 3,
gl g2 g3

respect _vely.

Substituting Eqs. 2.15a-c into Eq. 2.14 and setting e to I0°

gives the shear strain in terms of only the gage strains

_'t2 = 1.282 cql - 0.684 cg 2 0.598 cg 3 (2.16)

The shear compliance can then be easily be calculated for a load in

the 0 ° direction (0") by recalling
X

$66 °"12 = _'12 (2.17)

Since c = _ = O,
2 12

S66 sin(28) 0"x = 2_rt2 (2.18)

or

-1 {7 496 c -4.000 c - 3.496 s } (2.19)$66 0" " gl g2 g3
X

Therefore, since 0" , e eq2, and e are known, S can bex gl ' g3 66

easlly calculated.

Viscoelasticity

Viscoelasticity, the study of time dependent response of

materials with memory, is the central topic of this study. While

there are many aspects of viscoelasticity, the discussion herein will

focus on the constitutive relationships and viscoelastic models

currently used to describe and understand creep. The reader is

directed to the many good books on viscoelasticity [1,9,10,12,13] for
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a broader and more complete understanding of the subject.

Viscoelasticity is commonly associated with the process of creep

where the material undergoes a change in deformation even under

constant load. Similarly, creep recovery refers to a material slowly

returning to its original configuration after a load has been removed.

Viscoelasticity is also commonly associated with stress relaxation

where the' stress of a deformed body changes with time but the

displacement or strain is fixed. As with creep, the material may

return to its natural state after the deformation is released.

Another name for viscoelasticity is hereditary solid mechanics since

the materials exhibit a memory like behavior. While most materials

have little or no detectable viscoelastic behavior, polymeric

materials, such as the Kevlar/epoxy composite examined in this study,

exhibit strong viscoelastic behavior which needs to be understood.

The end result of any study of the viscoelastic response of a

material is to develop a mathematical relationship to describe the

observed stress-strain relationship. For a material under creep

loading, the generalized constitutive equation for linear

viscoelasticity can be stated as

c (t) = S (t) c i,j,k, 1 = 1,2,3 (2.20)
lJ lJkl kl

o

where Sijkl(t) is the time dependent compliance matrix and Ckl is the
o

input or known stress function which is defined as



29

(t) = _ H(t) (2.21)
kl kl

o

where H(t) is the Heavyside function. Similarly, for stress

relaxation, the constitutive equation is defined as

(t) = C (t) c i,j,k,l = 1,2,3 (2.22)
ij iJkl kl

o

where C (t) is the time dependent stiffness matrix and c is
lJkl kl

o

defined as

Ckl(t) = Ckl H(t) (2.23)

o

The creep compliance can easily be obtained by subjecting a m_teri_l

to a static load and observing the deformation. However, the

relaxation stiffness is much harder to obtain since a constant strain

field must be maintained while the stress is monitored. Since it was

not necessary to know the stiffness matrix for the present study and

due to the difficulties in performing stress relaxation tests, only

creep and creep recovery tests were performed. The stiffness can be

calculated from the compliance [29-31] but it is not a trivial task

since they are not the simple inverse of one another as with elastic

materials.

For linear viscoelasticity, Eq. 2.20 can be generalized for

various loading states as

eli(t) = Sljkl(t) Vkl H(t) + Sijkl(t-t I) (Vkl -Vkl ) H(t-t I) +
o I o

+ .. S (t-t) (_ -_ ) H(t-t )
ijkl n kl kl n

n n-I

(2.24)
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where n is the total numberof different stress levels and v is the
kl

n

stress level at time n. This equation can be further generalized to

give the Boltzman Superposition Principle.

t dv (w)eli(t) = Sijk1(t_T) kld_ dT (2.25)

where -m is generally taken as 0 assuming that the material has

experienced no previous stress or strain histories. This integral

form, also commonly referred to as a Duhammel integral, is only valid

for linear viscoelastic materials [9,13].

The compliance matrix has been shown analytically [31] to be a

symmetric tensor. This also has been shown experimentally by Morris,

et al., [55]. Thus for an orthotropic material in plane stress, the

constitutive equation for constant stress can be written as

I el(t) ]c2(t) I =

_,2(t)J

Sii(t,T,v) Si2(t,T,c) 0

Si2(t,T,c) S22(t,T,c) 0

0 0 S (t,T,c)
6B

I Vl° 1
_2 °

T12

o

(2.26)

where T represents temperature and _ is the nonlinear stress parameter

which can be best defined as a function of various components of the

stress tensor _lj" For the one dimensional case, the nonlinear stress

parameter would be only the stress in that one dimension. The

nonlinear stress parameter will be discussed in detail in the

'Nonlinear Stress Parameter' section of this chapter. The four terms
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shown are the four independent material properties of an orthotropic

composite lamina. Note also, that the compliance terms are no longer

just functions of time but of temperature and stress level. As with

the nonlinear stress effects, the temperature, and other accelerating

factors such as moisture, will be presented later in this chapter.

The models described in the following section will present various

nonlinear compliance models that use a nonlinear stress parameter.

Viscoelastic Constitutive Models

This section will examine briefly some the more popular

viscoelastic compliance models used in both linear and nonlinear

viscoelasticity. They will only be presented here from a one

dimensional point of view, i.e. c(t) = S(t,v)'v, but all four

compliance terms of an orthotropic material under plane stress can be

modeled similarly.

The mechanical analogy model of springs and dashpots is one of

the most basic and easiest to understand models for viscoelasticity.

By placing a sufficient number of springs and dashpots in series

and/or parallel, any linear material property can be accurately

modeled. The most commonly used configuration to model creep

compliance is a series of Kelvin elements (a single spring and dashpot

in parallel) with a single free spring as shown in "Fig. 2.5. For

linear springs and dashpots the compliance function becomes
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n [ eEit ]
S(t) - Eo + _ 1 - l (2.27)

1=1

Where E is the spring stiffness and _ is the dashpot viscosity. The

model shown in Fig. 2. S is considered a viscoelastic solid since there

is no permanent flow. If a single dashpot is added in series, thereby

allowing permanent deformation to occur', the resulting model would be

considered a viscoelastic fluid [I0]. These linear mechanical models

can be extended to include nonlinear stress effects by simply allowing

the springs and/or dashpots to be nonlinear. This idea is more fully

developed in chapter 3 when the numerical procedure to solve nonlinear

viscoelastic problems is presented. The major drawback of using

mechanical analogy models is the large number of parameters that must

be defined or determined.

One of the first models to consider the nonlinear stress effect

was the multiple integral by Green and Rivlin [9S] which is based on

the Volterra-Frechet integral. For general loading this model is

expressed as

t t t .t

-GO -GO -_ -._

d_(T 1) d_(T 2) d_(T 3)

dT dT d_
1 2 3

dT dw dT + ...... (2.28)
1 2 3

This model is similar to the Boltzman integral for the first integral
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term. The additional terms, while complex, simply allow the nonlinear

effects to be modeled. While this model can accurately model most

viscoelastic materials, the complexity of the model limits its

usefulness. Even if the expression is limited to only triple

integrals, there are still 12 kernels to be determined experimentally

which Is beyond the ability of most testing methods and patience of

many investigators.

Another method to account for the stress nonlinearities is

through the use of a superposition principle similar to the Time-

Temperature-Superposition-Principle, TTSP, (see the TTSP section).

Given the basic equation

S(t,_) = S + b AS(_) (2.29)
o

where b = vertical shift factor

= reduced time given by _ = tla and a is the

horizontal shift factor due to the stress level

one can see how the various stress effects could be shifted to

generate a master curve based on short term testing. This expression

has been used for nonlinear stress effects in graphite/epoxy

composites by Griffith [73] with some success. However, this scheme

does not lend itself to a numerical procedure and thus was not pursued

as a viable model.
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Power Law Based Viscoelastic Constitutive Models (Both Linear

and Nonlinear)

The simple power law

where S
0

S(t) = S + mt n (2.30)
0

is the instantaneous compliance, and m and n are constants,

is a common method used to describe the linear viscoelastic response

of a material This model has been shown to work well for a large

variety of both metallic and polymeric materials. The power law can

be modified to include nonlinear stress effects by assuming both S
0

and m _re functions of stress. Findley [23-28] proposed that the

stress function should be in the form of a hyperbolic sine function,

such that

So = So sinh(_/_s) (2.31a)

m = m' sinh(_/_ ) (2.31b)
m

n = constant (assumed independent of stress level)

#

where So, Vs' m', and vm are material constants. Even though this

model (often referred to as the Findley power law) is basically an

empirical model, it has been applied to various material systems with

success [27,27,78]. The advantage of the power law is in its

simplicity and relatively few constants which need to be determined

from experimental data.

This study used the power law but instead of the hyperbolic sine

function to model the nonlinear stress effects, a simple quadratic
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function was used, giving

S(t,¢) = (1 + g2)S + (1 + f_)mt n
0

(2.32)

where S and m are the linear constants and g and f are the
0

nonlinear stress constants. The reason for this modification was two

fold. First, the hyperbolic sine function can cause numerical

difficulties at high stress levels since the sinh function increases

rapidly fop values larger than I. Second, by simply allowing f and g

to be zero, the linear form is regained, whereas with the sinh

function, f needs to go to infinity, which is conceptually and

numerically more difficult. Furthermore, the general idea of the

nonlinear effect being a higher order effect of the linear case is

also easily understood. This model will be referred to as the

'quadratic power law' in this study.

The equation parameters for both the Findley and quadratic power

law models, 5 total, (S , m, n, f, and g for the quadratic power law),
0

can be obtained solely from creep tests. The linear terms, S , m, and
0

n, are first determined by using a least-squares fitting routine. The

nonlinear terms, f and g, are obtained by fitting the quadratic

function to a series of S and m values that were determined from a
0

series of creep tests at different stress levels. A least-squares

routine is also used in this model fitting. An interactive computer

program was written to do the model fitting on a microcomputer, which

is described in Appendix A. While some investigators [31,76] have

argued that creep recovery tests should be exclusively used to
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determine the exponent n, this study on Kevlar/epoxy composite showed

that both creep and creep recovery tests will Eive the same n value as

is grap_ically shown in Fig. 2.6. Other tests that were conducted in

this study showed similar results. Furthermore, the accuracy of fit

for the creep data was substantially better than for the creep

recovery data, based on the coefficient of variation (FIE. 2.7) for

all tests. Therefore, this study used only the creep test data in

determining the viscoelastic parameters.

Another insight obtained from FiE. 2.6 is the exponent 'n' of the

power law is dependent on the temperature of the test. Since the time

and temperature are related through the TTSP, this temperature

dependence can also be viewed as a time dependency. The low

temperature tests are representative of the relatively flat initial

portion of a power law curve whereas the higher temperature tests

reflect the curve at longer times where it is changing rapidly

(Fi E . 2.8). Thus, it is not surprising for the low temperature to

have a low 'n' value since they are tryinE to model the flat initial

region of the power law. The 'n' value does tend to become constant

for the hiEher temperature tests since they are in the upper portion

of thu curve where it is changing rapidly. Similarly, Heil [76]

showed that the 'n' value increases as the length of the creep tests

increases but will become constant at some point, presumably when the

creep tests enters into the upper portions of the power law. In view

of this effect, short term tests should not be used to model lone term

effects but master curves or actual long length tests where both the
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initial and upper portion of the power law curve are evident should be

used. This study uses master curves, constructed using the TTSP, which

enables 'n' to be obtained for the entire curve at one time.

In recent years the general power law has increased in

popularlty. The linear model can be written as

(s - s )
S(t) = S + r g (2.33)

q (I + T/t) n

where S is the initial (or glassy) compliance, S is the long term or
g r

rubbery compliance, T is the characteristic time of the power law and

n is the power law exponent. This model has four parameters, which is

one more than the simple power law. This allows the rubbery plateau

region of the compliance, which is common in polymeric materials to be

modeled. Figures 2.8 and 2.9 show how the simple and general power

laws compare in both normal compliance and log compliance scales.

Schapery Integral (Nonlinear Viscoelastic Constitutive Model)

Another widely used nonlinear viscoelastic model is the Schapery

integral model which is derived from the fundamental principles of

irreversible thermodynamics [29-34]. This model has been used

successfully on graphite/epoxy composites [?6]. For uniaxial stress

the final form for strain is written

t d(g2v )e(t) = goSov + gl 8S(¢ - @') dT dT (2.34)
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where

S , AS(C) = initial and transient compliance for the
0

linear viscoelastic response

t

¢ = ¢Ct) = _ adt'
o (r

¢' = ¢'(T) = f_ adt'
o

go' g1' g2' av = nonlinearizing stress functions

It should be noted that both S and AS compliances are independent of
0

stress and the nonlinear stress effects are introduced through the E ,
0

gl' g2' and a terms. The a can be considered as a 'stress shift

factor' similar to the temperature shift factor a (to be discussed in
T

a subsequent section). While the AS function is not restricted to any

particular form, the power law, AS(¢) = m¢ n, is generally used for

convenience. Equation 2.34 then becomes

t

e(t) = goSo O" + glm I (¢ - ¢" )n

-W

dT
dT (2.3S)

If the nonlinear parameters are equal to i (go=g1=g2=a =I) then the

linear Boltzman Superposition Principle equation is obtained

(Eq 2.28). For a simple static creep test, with the load equal to v ,
0

Eq. 2.35 can be further simplified to
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-- [ + glg2mtn ]e ( t ) goSo n
a

G

(2.36)
o

This form is similar to the nonlinear power law type models previously

reviewel, except for the form of the nonlinear stress functions, which

are compared in Table 2.1.

Table 2.1. Comparison of Functions for Compliance.

Schapery

Integral

g Ca-)
o

gl (_) g2(G)

Findley

Power Law

sinh(v/v )
S

Quadratic

Power Law

(1 + g2)

sinh(v/v )
m

(1 + f2)

Basic

Power Law

S
o

m

Since the form of the stress functions can be chosen arbitrarily for

the Schapery model, the difference between the three models is only

minor. For a more detailed derivation and understanding of the

Schapery integral as applied to composite materials, refer to Tuttle

[76] or Heil [76].

The Schapery integral equations in the form of Eq. 2.35 require 7

constants to be determined from the experimental data as opposed to 6

for the nonlinear Findley or quadratic power law model. The

additional parameters allow more flexibility in modeling the nonlinear
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stress effects but have the disadvantage of requiring additional

experimental tests to obtain those parameters. To determine all seven

parameters, creep and creep recovery data must be used in a four step

curve fitting procedure. The first two steps determine the linear

parameters, S , m and n, from creep and creep recovery data in the
o

linear stress range. The remaining nonlinear parameters, go' El' g2'

and a are determined from the creep and creep recovery data in the

nonlinear stress range. Two difficulties in using this procedure are:

first, the linear and nonlinear stress range must be determined before

the fitting process and second, recovery data must be used. While the

first objection can be overcome by repeated fittings until the best

linear and nonlinear ranges are found the second poses more serious

drawbacks. The strain in a creep/creep recovery test should

theoretically return to zero for a true viscoelastic solid, which is

the assumption of the Schapery integral model. However, actual tests

have shown that the recovery many times does not return to zero and

the concept of permanent deformation must be introduced [75,76]. This

permanent deformation is generally subtracted from the creep recovery

data before calculating the 7 parameters by curve fitting.

Furthermore when repeated tests are performed on the same specimen,

which is necessary when using the Time-Temperature-Superposition-

Principle (see later section), the creep recovery data becomes very

sensitive to long term recovery of previous tests. This is especially

true at high test temperature. Also the weight of the grips, which

must remain attached to the specimens in the ovens during the creep
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recovery portion of the test, can have a significant effect on the S
22

and Sss compliance terms due to the low stiffness and strength of

those compliances.

This study will use the quadratic power law model due to its ease

of use and understanding, and the ability to get all parameters from

the creep curves. Also, the difference between the Schapery

integrals, quadratic and Findley power law models in the final form

differ only in the stress function form which is totally arbitrary

(see Table 2.1).

Nonlinear Stress Parameter

The expressions for the nonlinear power law type models and

Schapery integral model presented previously were simplified for a one

dimensional type material in a uniaxial stress state. In those cases

the nonlinear stress parameter was simply the applied stress level,

the only stress component. However, for materials in a state of plane

stress, such as composite laminate, there can be three stresses, vl'

_, and T12, all of which could affect the viscoelastic response.

Furthermore, this stress state can be broken down into the matrix and

fiber stresses giving a total of six stresses that could possibly

influence the nonlinear stress effect. The most general form of the

nonlinear viscoelastic compliance term would be

s =s CT, 12' 1' 2 ) = SIjCT't'_) (2.37)

where f and m superscript refers to the fiber and matrix stresses,
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respectively and _ is some combination of the stresses referred to as

the nonlinear stress parameter. In matrix form the equation would be

1 s12 t,T,  0]i 1o}
¢2(t) = lS12(to,T,_) S22(t,T, cT) 0 o'20
_'t2(t) 0 S66(t,T,_r) r12

o

(2.38)

In order to account for the stress interaction, the matrix

m
octahedral shear stress, T

oct '
was introduced by Schapery [31], and

has been used successfully by others [74-76] for use with composite

m
materials. The general form for

oct
is

I

m = lr(o m - ore)2 + Corn)2 + (0.._)2 + 6(Z.12)2)_. C2.39)Toct 3 L 1 2 1

where the matrix stresses are given by

m
m

2

T m

12

1 El i ut2

0 1

0 0

0

0

1

I 1110" 2

T 1

(2.40)

m
However, x

oct
is only applicable for those compliance terms, mainly

S22and $66 , where the fiber direction stress, v1' does not influence

the nonlinear creep.
m

For graphite/epoxy composites, T
oct

has worked

well [74-76] since the fibers are non-viscoelastic and thus only the

S and S
22 66

composites,

compliance terms need to be modeled. For Kevlar/epoxy

the S and S compliance terms are viscoelastic and
11 12
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require some sort of nonlinear stress parameter. Because, the

stresses in the matrix will have little effect on the creep in the

m
fiber direction,

oct
cannot be used for the nonlinear stress

parameter in the S and S terms.
11 12

Griffith [73] in his study of viscoelastic effects of

Graphite/epoxy composites used a simple but seemly effective nonlinear

parameter of _ (=_) for $22, and T12 (=T:2) for $66 which will be

referred to as the 'direct stress method' in this study. He thus

neglected the stress interaction between the different stresses but

still had reasonable results. This was used in the present study with

the added nonlinear parameter of 0. for S and S since this is the
1 11 12

dominant stress for both of those compliances. Various numerical

creep predict ions were performed on the Kevlar/epoxy laminates to

m
identify the difference between using the T

oct
or direct stress

method. The results of these tests showed no difference (<0.1%) for

all test cases. The final constitutive relationship used in this

study to describe the nonlinear stress effects are

I _I(_) I
c2(t) =

• 12(t)

S11(t,T,0._ ) $12(t, T,0.I) 0

S12(t,T,0.1) S22(t,T,0. 2) 0

0 0 S66(t,T,TI2)

where Slj(t,T,0.) = Slj (1 + Eli 2) + mij

n

(i + f _)t _;
lj

f .1° t
0"2 o

T12
o

(2.41)
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Time-Temperature-Superposition-Principle

The Time-Temperature-Superposition-Principle (TTSP) in

viscoelasticity, simply stated, relates time and temperature effects

on the behavior of polymers. This principle, also known as the Time

Translation Equivalence, Method of Reduced Variables, or Time

Temperature Analogy, is important in characterizing the time dependent

response of polymer based viscoelastic materials because the

temperature parameter can be used to accelerate the time dependent

processes, such as creep. Even though the TTSP is generally

considered an empirical process and relies heavily on experimental

data to formulate the time temperature relationship, it has been used

extensively in characterizing polymer based materials with good

results. One of the main objectives of this study is to characterize

Kevlar/epoxy, where both the fibers and resin are polymers, for long

periods of time using only short term tests. This requires an

accelerated test method such as the TTSP. Basic background

information concerning the TTSP will be presented in this section

along with simple examples demonstrating its usefulness and

methodology of application.

Leaderman was first to explicitly state that time and temperature

are related, forming the basis of the TTSP [96]. He noted that the

creep compliance curve at an elevated temperature is the same shape as

a creep compliance curve at a lower temperature but displaced in time.

This effect, which is also referred to as contraction of the time

scale or reduced time, is best understood with a graphical example
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such as Fig 2.10. In principle, any part or section of a creep

compliance curve can be obtained quickly by simply changing the

temperature and shifting the curve horizontally by the shift factor a
T

(aT is defined in detail in the following paragraph). By extending

this concept to multiple compliance creep curves at various

temperature levels, one can readily see how a long term master curve

can be constructed by horizontal shifting the short term individual

curves together as graphically shown in Fig. 2.11. The TTSP also

works equally well on creep recovery, modulus, and vibration type

tests. Also there has been some effort to extend the TTSP concept to

yielding and delayed failure.

The relationship between time and temperature is generally

referred to as the shift factor, aT, which identifies the amount of

horizontal shifting one curve must under go to match another curve at

a different temperature, as shown in Fig 2.10. This shift factor

could be thought of as a scaling time factor which relates the time,

t, at the reference temperature with the reduced time, t', at a

different temperature. This relationship is generally written as

t

t' =f adt
o T

(2.42)

which can be simplified to

t
t' - (2.43)

a
T

if aT does not change with time. This requires the temperature to be
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constant, which

Therefore, given

temperature T ,
o

is generally true for most experimental tests.

a creep compliance function at a reference

S(T ,t) = S + S (T ,t) (2.44)
o o c o

the creep compliance at another temperature, T, becomes

or

S(T,t) = S + S (T ,t') (2.4S)
o c o

S(T,t) = S O + Sc(To, t/a r) (2.46)

where the shift factor, aT, is known at the reference temperature.

This shifting process is more obvious if the log of Eq. (2.43) is

taken

Log t' = Log t - Log a (2.47)
T

The creep curve at the new temperature can now be viewed as a simple

shifting of curves in log time by the amount of Log a .
T

The shifting

will be left if Log aT is positive (the new temperature is below the

reference temperature) and right if Log a is negative.
T

Although this

is the accepted convention in the western world there are other

convent ions.

Every temperature will have a different a and the function that
T

relates a and temperature is called the shift factor function. An
T

example of such a function is shown in the upper right hand corner of

Fig. 2.11. A tremendous amount of effort has gone into using the TTSP
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on a wide variety of materials with the hopes of finding a single

shift factor function for all materials. However, the shift factor

function is still generally determined experimentally by performing

various creep, creep recovery, or dynamic loading tests at various

temperatures and time periods.

There are, however, two well known and well used equations

developed for shift factor function that work for a wide variety of

materials. The most famous is the WLF (Williams-Landel-Ferry) [4]

equation given as

-c (T - T )
I o

= (2.48)Log aT C + T - T
2 o

where T is the reference temperature (C) which is generally the glass
o

transition temperature T , T is the actual temperature (C), and C and
0 1

C2 are constants. This equation has been found to fit experimental

data for many polymeric based material when C and C are equal to
1 2

17.44 and S1.6, respectively for the temperatures between T ,and
o

I00 ° C above the T . For a further understanding of the WLF equation
g

see Ferry [I].

A second equation that has been generally used for temperatures

below the T is based on the Arrhenius equation
0

aT = B exp AI--_} (2.49)

where B is a constant, AH is the activation energy, R is the universal
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gas constant, 1.986 cal/mole-K, and T is temperature. By taking the

log of both sides and integrating between the reference temperature

T , and the desired temperature T, gives the better knownform of
o

Log a T 2. 303 R T (2.50)

where T and T are in degrees Kelvin.
o

Even though both the WLF and Arrhenius equations have been shown

to work well with many material systems, experimental data still

should be used to determine the shift factor function of any new

material. Therefore, it can be said that all shift factor functions

are empirical and any function could be used to describe the shift

factors. Along these lines, this study will use a simple linear

function for the shift factor function due to its simplicity and ease

of use in the numerical scheme which will be employed.

Although this study will not examine humidity or moisture

effects, others have shown that these also behave similar to

temperature in that the superposition principle can be used

[51,65,66]. The Time-Temperature-Moisture-Principle (TMSP) would then

include a moisture shift factor into the reduced time parameter, t',

as

t t
t' - - (2.Sl)

a a a
T M TM

where a
M

is the moisture shift factor and a is the combined shift
TM

factor. Crossman and Flaggs [48] were able to successfully obtain a
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two dimensional plot showing the combined shift factor as a function

of temperature and moisture for ±45 ° cross ply laminates made from

graphite/epoxy. Others have also proposed that stress be used as a

shift factor similar to temperature and moisture, which has been

termed as the Time-Stress-Superposition-Principle (TSSP) [40,73].

The TTSP discussed so far has been theoretically applicable only

to 'thermorheologically simple material' (TSM). This class of

material generally includes only isotropic and homogeneous materials

with only one viscoelastic component. On the other hand

'thermorheologically complex materials' (TCM), includes two part

materials such as composite materials, where it is possible for both

the fibers and resin to have different viscoelastic components. For

TCM vertical shifting of creep compliance curves may become necessary

for all temperature ranges, whereas vertical shifting is only

necessary above the T for TSM. There are a number of methods to
g

perform the vertical shifting but most rely on visual inspection of

the shifted curves. Griffith [73] gives a review of the many vertical

shifting methods and the difficulties encountered in trying to include

vertical shifting.

This study will not use vertical shifting in the construction of

master curves even though both materials in the composite system

tested are viscoelastic which would classify the composite TCM. There

was three main reasons for this; first, the fibers will dominant the

fiber direction compliance, $11 , and the fiber/transverse coupling

compliance, Si2 , and likewise the resin will dominant the transverse
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direction compliance, $22 , and shear compliance, Sss. This domination

in the respective directions will cause the results for each direction

to behave like a TSM. The second reason is the vertical shifting

involves a visual or subjective decision on the shifting amount. In

addition, the many different methods available for vertical shifting

in itself casts doubt on its reliability. Recall, one of the end

results of this study is a self contained test procedure for

accelerated testing of time dependent properties of composite

materials and a computer program for the design engineer in industry

and thus simplicity is of prime importance. Third, Ferry [I] stated

that there should be no vertical shifting in the glassy region for

most polymer materials. The temperature ranges that the Kevlar/epoxy

system used in this study were within the glassy region. A further

justification is the good and repeatable results obtained in using

only horizontal shifting on the Kevlar/epoxy composite system tested

in this study which will be presented in later chapters.

As mentioned in the previous paragraphs, the shifting process

needs t) be automated to insure consistency and ease of use. For this

purpose an automated curve shifting procedure was developed and

incorporated into a computer program. The program requires the

individual short term curves, up to 30 at one time, and then it will

calculate the best fit to form a master curve at the reference

temperature of the first curve. For a complete understanding of the

theory used and operating procedures, refer to Appendix D.



Chapter 3

NUMERICAL SOLUTION METHODS FOR VISCOELASTIC

ORTHOTROPIC MATERIALS

Solving time dependent or viscoelastic problems for a homogeneous

isotropic material can be involved and tedious. Extending this to

nonhomogeneous and anisotropic materials such as layered fiber

reinforced composite materials can be nearly impossible for closed

form solutions. However, with numerical methods, the designer or

engineer of these materials can predict, with reasonable accuracy, the

viscoelastic response without doing actual creep tests on each

possible laminate.

The overall criterion for an acceptable viscoelastic numerical

method is one that will be stable for large time steps, converge to

the correct answer, and minimize the necessary computer memory and

time requirements. In addition to these conditions, this study

requires the numerical method to operate on a microcomputer, which

further restricts the computer memory and time. However, there are

many benefits to using a microcomputer, such as ease of use,

transportability, and ease of access to the program. Also, design

engineers are able to make the design process, with its many 'what if'

conditions and numerous rerunning, preceed easier and faster.

This chapter will examine various numerical methods that have

been used in solving numerical viscoelastic methods. A new method,

$8
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called the Nonlinear Differential Equation Method (NDEM), which is

based on the prony series, will be introduced a_ndcompared with the

currently available methods. The latter part of this report will deal

with the actual implementation and verification of the NDEMmethod.

Previous Numerical Work at VPI&SU

The concept of predicting the viscoelastic response in any

general laminate has been previously investigated by others at

Virginia Polytechnic Institute and State University. Yeow [72] and

later Dillard, et ai,[74,77] proposed using known unidirectional

material properties (obtained experimentally) of a composite lamina to

predict the nonlinear viscoelastic response of any general laminate

constructed from the same material by numerical methods. They

examined the graphite/epoxy T300/934 composite system and closely

predicted the response of various general laminate composites.

Others, Tuttle [75] and Hell [78], have also used this basic concept

to predict the response of other graphite/epoxy systems.

The numerical solution method used by Dillard w-as based on

classical lamination theory, with time incremented in a step fashion.

The solution scheme first calculates the static stress and then begins

the time step increments. The strain state is determined at t+At,

using the stress state at time t and the viscoelastic constitutive

equation for that particular material. The stress state is assumed to

be constant throughout the time step from t to t+At. The new ply

stresses are then determined at t+At based on the current creep
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strains and the applied mechanical load. This cycle is repeated, with

the new stresses substituted back into the nonlinear compliance

functions, until the stresses converge. A new time step is then taken

and the process is repeated. The algorithm for calculating creep

strains is similar to the classical lamination theory method of

calculating the strains due to thermal loads. This procedure was

implemented on an IBM mainframe computer and was called VISLAP

(VIScoelastic LAmination Program) by Dillard [77].

There were three major difficulties with VISLAPand its numerical

method. One, the basic algorithm of substituting old stresses back

into the nonlinear compliance functions, and repeating the solution

process until all stresses converge can have stability problems. This

algorithm of successively substituting an unknownvariable into a set

of equations until convergence is achieved is called the Gauss-Seidel

or successive substitution method, and is not unconditionally stable.

For example, if the coefficient matrix, [C], in the following set of

equations, represented in matrix form,

[C](x} = [B] (3.1)

is not positive definite then it will not converge [97]. In some

laminate cases, predominantly two fiber angle laminates, VISLAP was

unstable for this reason.

The second difficulty with VISLAP concerns the large time step

size necessary to reach a solution for problems covering long time

spans. If the time step is sufficiently large, stability problems
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will arise. VISLAPbasically uses a first order forward integrating

method, called the Euler Method [99], to solve for the creep strains

at each step, which will have a maximumstep size to remain stable.

In conjunction with the time step size problem is the third

difficulty with VISLAP; the actual computer time and computer memory

space needed for a solution grows exponentially with each additional

time step. Since the solution method is based on solving a

convolution integral, the creep strain must be recalculated over the

entire time span back to the initial start time for each time step.

This requires that all stresses at each time step must be stored and

used for calculations at the next time step. This recalculation of

the creep strain integral at each time step becomes more time

consuming with each additional step. In order to minimize the

computer solution time and memory,VISLAPincreases time step sizes in

a logarithmic manner as the solution progresses. However, as stated

earlier, this can cause numerical instabilities.

In order to overcome some of the problems in VISLAP but still

retain its ability to calculate the complex, time dependent stress and

strain state of an orthotropic composite laminate, various common

numerical solution techniques will be investigated in the following

sections. Also, a new method will be presented which resolves all the

problems dealing with stability and solution time length.

Direct Iteration of the Volterra Integral

Viscoelastic problems naturally fall into the broad class of
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mathematical problems called convolution integral equations, of which

the Volterra integral equation of the second kind is the most common.

The general form of the Volterra equation is

x

= f(x) + A[ k(x,t) u(t) dt (3.2)d(X)

a

where u(x) is the unknown function and f(x), k(x,t), and A are known

functions or constants. By simply changing the variable and function

names and forms, the well known hereditary integral in viscoelasticity

[I0] becomes evident.

t

eCt) = _o SCt) + i SCt-T) a_CT)aT dT (3.3)
J
O

where c(t) is the total strain, S(t) is the compliance function, and

v(T) is the stress function. This form is for a single homogeneous

material. For a material made from multiple homogeneous layers, i.e.,

composite laminates, the total strain _(t) will be a function of the

stresses in each of the plies and Eq. (3.3) becomes

t

e(c(t),t) = _(o)S(t) + I S(t-z)

0

a_(T)
_T

dz (3.4)

which is a Volterra integral of the second kind.

A simple example of such a system would be a one dimensional

laminate material that is constructed from two parallel materials as

illustrated in Fig. 3.1. The two materials have different compliance
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functions and the complete laminate is under a constant load. In this

example one material will be elastic and the other viscoelastic with

and v as the stresses in material i and 2, respectively and v as
1 2 o

the total applied stress. If S(t) represents any time dependent

compliance function then

t av (T)e2(t) = c2(o)S(t) + S(t-T) 2aT

0

dT (3.5)

By using the relationships

e (t) + e (t) : e(t)
I 2

(t) + v (t) : _ (t) =
1 2 o o

E eCt) = _ (t)
I I

E eCt) = c (t)
2 2

(3.6a)

(3.6b)

(3.6c)

(3.6d)

it can be shown that

VlCt) v2(t) It 0V2(r)Et E2 - SCt-T) aT dT + _2(o) SCT) (3.7)
0

Or

t 0o" (T)_2(t)FEt+E2] = _E- EE[ J SCt-T) 2 dT - EE_ (o)S(t) C3.8)02 12 OT 122

0

This can be further simplified by integrating by parts to give
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o'E EE Ii
o I I 2 aS(t-T)

_(t) - E1 2 1 2 2
+E + E +E a'r (r ('r) d'r (3.9)

This form can be more easily evaluated since S(t) is usually given and

its derivative can be calculated directly, whereas _ (t) is not known
2

and its derivative is difficult to find. Eq. 3.9 is in the standard

convolution Volterra integral form which has been studied in detail by

others [99-101] from a mathematical point of view. Once v (t) is
2

known, the total strain e(t) can easily be calculated from Eq. 3.6a-d.

It should be noted that the one dimensional example presented a very

simplified case and for a more natural multidimensional material the

equation would not only be more complex, but there would be several

coupled equations and not just one. However, to understand the basic

principles and difficulties in solving the Volterra by numerical

methods, the given example will be examined.

A closed form solution of Eq. 3.9 is possible for certain

compliance functions, S(t), such as a linear dashpot model where

S(t) = t/y, or a Kelvin element model where S(t) = l-exp(-tE/_).

However, compliance functions with solutions are scarce and are found

for only simple functions. One important function that is widely used

in linear viscoelastic analysis, and does not have a closed form

solution, is the viscoelastic portion of the power law equation (see

Fig. 3.1)
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S(t) = mt n (3.10)

where m and n are constants. Since closed form solutions are

difficult to obtain and limited to certain compliance functions,

numerical methods need to be applied to obtain most solutions.

Four" concepts to be considered when employing numerical methods

are convergence, error, stability, and solution time. The solution

time length becomes especially critical when dealing with convolution

Volterra integrals, due in part because _(t) and asCt-T)/a_

continually change with each new time step. This requires the

complete integral to be recalculated foF each new time step. Unlike

standard integrals, past results cannot be used to calculate future

points, but the total integral, from t (t=O) to the current time, t,
0

must be recalculated. At long times, i.e. large number of time steps,

this method can require a tremendous amount of time and computer

memory storage. If, however, the time steps can be varied, such as

short steps at the start where the function is changing rapidly and

long steps towards the end where the function is changing slowly, then

this method can be economical.

Convergence is generally not a problem for a non-singular kernel

or compliance function, S(t). However it does become a concern if the

kernel is not well behaved or is singular. The power law (Eq. 3.10),

which is used extensively in viscoelasticity, is classified as weakly

sinEular, meaning the derivative at some point is singular or

undefined (at zero for the power law). The solution of the integral
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can converge with weakly singular functions if the tlme steps around

the weakly singular point are sufficiently small. Convergence of the

power law and its associated problems will be demonstrated with an

example later In this section.

Stability or numerical oscillations can occur in the solution of

numerlcal problems. Even if the problem seems to converge and the

error Is small, it could diverge after a certain time step or step

size. Two common causes of stability problems are: I) the numerical

precision of the computer or code, which leads to round off errors and

truncation, and 2) the time step size. Generally the precision of the

compute- Is not a problem or can be solved by upgrading to a better

computer or programming language. On the other hand, most numerical

solution techniques have a limit on the time step slze before

stability becomes a concern. All forward or explicit numerical

integration techniques, which are generally used for the convolution

integral, are not absolutely stable for all time step sizes [98,99].

This is a serious concern wlth viscoelastic analysis since increasing

time steps are necessary to reduce the computer calculation tlme and

memory size, as explained in the preceding paragraphs.

Error Is associated with the accuracy of the computer and the

algorithm used to solve the problem. Various algorithms have been

developed [99,100] for the solution of convolution integral equations

which include, in ascending order of accuracy, Euler, Modified Euler

or trapezoidal, Simpson rule with trapezoidal end, Simpson rule with

rule, and Runge-Kutta. The higher order methods take more time for
8
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each time step but the accuracy is generally higher and larger time

step sizes are possible. The trapezoidal algorithm will be presented

in detail to demonstrate how the Volterra Integral can be solved

numerically. Other methods are similar and will not be presented.

However, the solution of the example problem presented earlier by all

methods mentioned above will be compared at the end of this section.

An approximation for the convolution integral can be written

t

IO I _ I-Tj) O'(Tj )
KCti-T) _CT) d_ _ h wll KCt = h w K _(_ )

j:o J:O Ij Ij j

_: 0,1,2,..N (3.11)

where h is the step size, Kij = BS(tl-zj)/az, and wij are the weights

for the appropriate integration rule. For example, the weights for

- 1

the trapezoidal method are Wlo- wli= _, and w IJ= I.
All of the

preceding weights assume equal step sizes. In this manner the first

few steps of Eq. 3.9 for the trapezoidal method are

_E
o 1

_(to=O) - E + E (3.11a. d)
1 2

_E EEh

o I + I s [w + w K _.(tl) ]0"2(tl} -- El 2 1 2 11 11
+ E E + E 1oK1o_2(to )

_E EEh

o 1 I s [ I K (to) + I K (tl) ]+ E + E + E 2 11°'2 2 11°'2
El 2 1 2

_(t 2) -

_E EEh

+° El + E+ E1 2 [ 12K2os to) _ I °"2(t2)]
__C + K Ct ) + -E

E1 2 1 2 212 1 2 22
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In each of these steps the unknown stress, _2(tl), can be factored out

and solved for by manipulating the equation algebraically. However,

if the kernel K(t) is nonlinear in terms of stress, then all i

nonlinear equations would need to be solved simultaneously. This

quickly becomes prohibitive since there will be thousands of time

steps in a typical problem, which translates to solving thousands of

nonlinear equations simultaneously. Similar relationships to Eq. 3.12

can be constructed for other integrating schemes. For higher order

methods such as the Simpson rule or Runge-Kutta, a starting procedure

[100-104] needs to be used which should be of the same order of

magnitude in accuracy.

To evaluate the use of the Volterra integral for viscoelastic

materials, the one dimensional example described at the beginning of

this section (Fig 3.1) will be used. Two different but common

compliance functions, S(t), were chosen to be examined, a dashpot,

S(t) = t/y, where _ is the viscosity constant of the dashpot and a

power law, S(t) =mt n, where m and n are assumed given.

The dashpot function has an exact solution to Eq. 3.9, which will

be used to verify the numerical results,

E
2 -At

= v e (3.13)°'2 o E+E
1 2
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where A = EIEJ_(EI+ E2) and _o is constant. Five different

inteErating techniques were used to solve the example problem: Euler,

trapezoidal, trapezoidal with 3-point starting technique, Simpson with

3-point starting technique and trapezoidal rule for even last data

point, and Simpson with 3-point starting technique and 3/8 rule for

the even last data point. The results are shown on Fig. 3.2. Even

though the time step, h, was large, all but the Euler method are

within acceptable accuracy limits.

The second compliance function to be examined, the power law, has

no closed form solution to compare with the numericsl results.

However, by examining the results of various integratinE techniques

the solution can be deduced. The same five integratinE techniques

used for the dashpot test case were also used for the power law

(constants m = 5 and n = 0.2) and the results are shown in FiE. 3.3.

The time step was h = 0. I, two magnitudes smaller than for the dashpot

example, but unlike the dashpot results the power law results vary and

even oscillate. If the step size is reduced, the solution tends to

converge to smaller values (FIE. 3.4) and it becomes evident that the

time step size affects the solution convergence. The solution does

seem to slowly approach a limiting value as h _ 0.0.

The solution of the power law function is inaccurate because it

is a weakly sinEular function at zero. The derivative of the power

law at zero is infinity and the derivative changes rapidly for small

values of time. This requires very small time steps, (slO -s) near the

oriEin for any of the numerical integration techniques to converge.
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However, with small time steps, the time required to solve the problem

increases tremendously which then limits the time span. The time step

size can be increased as the time becomes larger but there will be an

upper limit on step size before stability difficulties develop.

In conclusion, the direct numerical integration of the Volterra

integral for linear viscoelastic problems is not recommended. The

biEEest difficulty was the long run times necessarF for any numerical

solution to converge when usin E the power law compliance function.

This was caused by the weakly singular nature of the power law. Other

difficulties would be the inclusion of nonlinear stress effects, thus

creatin E a larEe number (on the order of hundreds) nonlinear equation

that would need to be solved simultaneously. It should also be noted

that the above difficulties would be magnified for multidimensional

materials such as orthotropic composite materials.

Prony Series in Modelin_ Linear Viscoelastic Response

The Prony series is a method to model viscoelastic response that

is derived from a series of Kelvin elements. This series can best be

understood by first looking at a single Kelvin element, which has a

spring and dashpot in parallel as shown in Fig. 3.5. The Kelvin

element needs two parameters to describe its response to a Eiven load

or displacement, the spring constant, E ,and the dashpot viscosity, _.

The load or stress, v , and the strain, e, can be related by summing
0

the stress in both the sprinE and dashpot.
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Y + O" = O"
s d s

(3.15)

Substituting the constitutive equations for a spring and dashpot gives

cE + c# = _ (3.16)
o

Solving for c, and assuming v is constant will give
O

This can be generalized with a series of Kelvin elements as

n I Et l2'c(t) = _ 1 - e lo N
I--1

(3.18)

where n is the total number of Kelvin elements in the series. As a

further generalization, a single spring can be placed in series with

the Kelvin elements such that

n I Et ]o + cr 1 - e [ (3.18)
oCt) = -t-- o

s 1=1

where E is the spring constant in the single spring.
S

Eq. 3.18 is

often referred to as a Prony series which can model the creep of a

vlscoelastic material accurately if the retardation times (T = y/E) of

the individual Kelvin elements are properly spaced. Since one Kelvin

element influences the strain over about I! decades of time, the
2

retardation times should be spaced about one per decade of time that

is being modeled.
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One advantage of the Prony series is its ability to accurately

represent any data over any time span if enough elements are used.

This is especially useful If that data is not uniform or does not

conform to any general curve shape. Of course, thls is also a

disadvantage since a large number of material properties, two for

every element, are required. In a contrast, the linear power law only

has 3 parameters, c = _ + mt n, to describe the linear viscoelastic
O

strain response. Another major dlfference between the Prony series

and the power law is the extrapolation of creep response outside the

actual collected data range. The Prony series is derived or fitted

only to actual data and after the last data point the series stops.

The power law is also derived from actual data but after the last data

point the equation still indicates or predicts a change in creep over

time. Although prudent engineering prohibits the use or extrapolation

of results past actual collected data, it is still useful to

understand the expected creep response or trend.

One of the most important advantages of the Prony series is that

each Kel,,in element can be solved independently as a differential

equation (see Eq. 3.15) and then the solutions can be summed together.

A dlfferentlal equation in the form of Eq. 3.15, allows the use of

common and well understood numerical methods for solving differential

equations. Since the problem has been transformed to solving

differential equations and not a convolution integral (i.e., the

Volterra Integral) the solution techniques are simpler and easier to

implement on a computer. The results of each time step no longer need
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to be stored and reused to calculate future creep steps like the

convolution method requires. All information needed to take another

time step is available in the current solution of each differential

equation.

The concept of using Kelvin elements and their respective

differential equations to solve viscoelastic problems was presented by

Zienkiewicz, et al [87,10S]. They used the differential equation

formulation in conjunction with the finite element method to

successfully solve geometrically complex problems. The constant

stress solution, Eq. 3.16, was used to develop a solution technique.

By taking a small time step, Eq. 3.16 can be written as

c [ -E-(t+At)]I] _occ t+At- _ 1 - e

"

= e-_At[_---_°][1- e--_ t] + _-_-° [I - e -_At]

1=e g +_ I -e
c t

(3.19)

where (c) is the strain from the previous time step solution and At
ct

is the current time step size. If the stress is constant for all time

steps, Ea. 3.19 will give an exact answer to Eq. 3.1S. However, in

most practical problems, the stress is constantly changing due to
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relaxation, temperature changes, load changes, etc. If the time step

is small and the stress changes gradually, then Eq. 3.19 gives

accurate results as shown by Zienkiewicz.

In order to describe the viscoelastic response over long periods

of time, Kelvin elements with different relaxation times may be

combined in series as shown in Fig. 3.8. Each Kelvin element is

describedby a differential equation and the solution can be written

in the form of Eq. 3.19. These solutions can then be summed together

to give the total strain

 c=7 ci -  t/"i
t:o c t+At = c t _ 1 - e El

i=o

(3.20)

where 1 is the total number of Kelvin elements in the series.

Solution techniques based on Eq. 3.20 have been widely used for

stress analysis of linear isotropic materials for limited time spans

[88,89,105]. There are three main deficiencies with the Eq. 3.20

formulation. First, only linear viscoelastic materials can be

analyzed, whereas many of today's materials, specifically plastics,

are nonlinear. A nonlinear viscoelastic material will have a

different compliance and rate of change of compliance at different

stress levels. Since Eq. 3.20 does not account for these

nonlinearities, the numerical results will possibly not agree with

actual experimental results. Hendriksen [89] and Roy [I07] have

extended the Zienkiewicz method to include nonlinear stress effects by

reformulating Eq. 3.20 as part of the Schapery integral model.
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However, both used a forward explicit solution method which limits the

time step size before instabilities develop as is discussed in the

next paragraph.

The second drawback of Eq. 3.20 is that the time step size has an

upper limit at which the numerical solution technique will become

unstable since the equation is a forward difference or a.n explicit

method. Only an implicit numerical method can be 'unconditionally

stable' for all time step sizes [98]. Limiting the time step size in

a viscoelastic problem, which can span ma_ny decades of time, is a

concern since large time steps become necessary toward the end of the

problem. The large but unstable time step problem can been overcome

by returning to the original differential equation, Eq. 3.16, and

formulating a higher order solution technique that is stable, such as

the Modified Backward Euler method [98]. Both Snyder and Bathe [I08],

and Booker and Small [88] have successfully used this for isotropic

materials.

Third, Eq. 3.20 is only a first order numerical solution

technique, commonly referred to as the 'Euler Method', for

differential equations. To increase the accuracy and/or decrease the

number of steps necessary, a higher order solution technique should be

employed. Again by using Eg. 3.18 directly, a solution method can be

used to increase the accuracy.

Other general problems with Eq. 3.20 are the constant stress

assumption at each time step and the difficulties of using it with

orthotropic materials. However, the two advantages of not having to
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store all past results and not having to recalculate strain at

previous time steps for every new time step taken overshadows the

disadvantages. The following section will present a method to extend

the Prony series method to solve orthotropic, nonlinear viscoelastic

problems for long time spans.

Nonlinear Differential Equation Method with the Prony Series

The basic concepts of Kelvin elements and Prony series presented

in the previous section will be utilized and extended to include

nonlinear effects, viscoelastic orthotropic materials, and

unconditionally stable time steps. It was these three difficulties

that limited the use of the Zienkiewicz differential equation method

for viscoelastic analysis.

The basic differential equation for a single Kelvin element can

be written as (see Eq. 3.1S and Fig. 3.5)

D I
= T _ - ---_--- c (3.21)

Where D is the compliance of the spring (I/E) and A is the retardation

time (y/E). Both the compliance and retardation time are considered

known and can be obtained from the Prony series used to describe the

viscoelastic response (see Eqs. 3.17 and 3.18). A single differential

equation of the form Eq. 3.21 can be used for each term in a given

Prony series.

Up to this point only one material property has been dealt with

at a time. However, all materials are defined, as a minimum, by at
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least two material properties which need to be considered

simultaneously. Isotropic materials are generally described by

Youngs' Modulus and Poisson's ratio, whereas orthotropic materials

have four independent material in-plane properties which are commonly

referred to as the fiber direction stiffness (En), the transverse

direction stiffness (E22) , the shear modulus (Es8 or G12) , and

Poisson's ratio of the fiber direction to transverse direction (u,2).

In condensed matrix form, these properties relate stress and strain as

[:}e =

_'12

1/Ell -u12_11 0

-v12/_11 1_2 2 0

0 0 1/G12

v

°" 12#

(3.22)

where eI and vl are strain and stress, respectively, in the fiber

direction, e2and _ are strain and stress in the transverse direction,

respectively, and _12 and v,2 are shear strain and stress,

respectively.
The matrix containing Ell , E22 , t)12, and G12 is

referred to as the compliance matrix [S] which can be written as

Isis20C = S 12 $22 0

_t2 0 0 Sss

(3.23)

where $11 , $12 , S22 , and S6s are the four independent properties

needed co characterize an orthotropic material. These four terms will

be referred to as S where q goes from 1 to 4, such that S = S
q 11 1'
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S12= S2, S22 = $3, and $66 = S4. This numbering convention becomes

necessary, as will be seen later, to differentiate these orthotropic

compliance terms from the rotated compliance matrix terms, which will

use the double subscripts (S ).
t]

The viscoelastic portion of each of the unrotated, S
q

be described by a Prony series. The general form is

terms can

S = 1 - 1 = 1,2,3..n (3.24)
q

1=1

where D is the compliance coefficient variable for the Ith Kelvin
! q

th
unit in the q direction and A is the retardation time. Both D

l l q

and A I are unknowns that need to be determined from experimental data.

However, the retardation time, A can be forced to be the same for
l

each Ith Kelvin element in each of the four material directions. This

is reasonable since A is predetermined or fixed when fitting a Prony
]

series to experimental data with only D allowed to vary.
1 q

Furthermore, each layer in a composite laminate will have a set

of four S terms describing its compliance matrix. If all the layers
q

are of the same type of material and not rotated, i.e. all 0°

direction, then S = S where k is the ply layer in the laminate and
k q q

Eq. 5.3 becomes
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r

! c
X

Y

. xy

k n n

kl 1 kl 2
I=1 I=1

n n

kl 2 kl 3
I=I I=1

0 0

n

y.skl 4
I=I

k

_r

• xyj

(3.25)

However, if ply k is rotated, then the compliance matrix becomes fully

populated,

j]k
E x

Y

'_'xy I

4 n 4 n 4 n

kl qll kl q12 kl q16
=I I=I q=l I=I q=l I=I

4 n 4 n 4 n

q=l l=l q=l I=1 q=l I=1

4 n 4 n 4 n

=I I=I q=l I=I q=l I=I

, k

O"

(3.26)

Where each of the S terms can be calculated from the
kl qi J

transformat ion matrices [19,20 ]. Similarly, the compliance

coefficients, iD , which will be used exclusively from this point on,q

can also be written in matrix form and rotated giving

. k

E
X

Y

xy.

4 n 4 n 4 n

_klDqii _ _ klDql2 _ _ klDqis

=1 1=1 q=l 1=1 q=l 1=1

4 n 4 n 4 n

q=l 1=1 q=l 1=1 q=l 1=1

4 n 4 n 4 n

}_ _k,Dq,6 _. _. k,Dq26 _ _ k,Dq66

q=l 1=1 q=l 1=1 q=l 1=1

• , k

O"
X

.0"
Y

O"

. xy.

(3.26a)

where for fiber direction term, q = I;
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4
D = m D

kl 111 k kl 1

2 2
D = m n D

kl 112 k k kl 1

3
D = 2 n m D

kl 118 k k kl 1

4
D = n D

kl 122 k kl 1

3
D = 2 m n D

kl 126 k k kl 1

2 2
D = 4 m n D

kl 188 k k kl 1

for fiber/transverse coupling term, q = 2:

2 2
D = 2 m n D

kl 211 k k kl 2

4 4
D = (m- + n) D

kl 212 k k kl 2

D = 2m n ( 2 2nk-m ) Dkl 216 k k k kl 2

2 2
D = 2n m D

kl 222 k k kl 2

2 2
D = 2m n (m -n) D

kl 228 k k k k kl 2

2 2
D = -8 m n D

kl 288 k k kl 2

for transverse direction term, q = 3;

4
D = n D

kl 311 k kl 3

2 2
D = m n D

kl 312 k k kl 3

3
D = -2 m n D

kl 318 k k kl 3

4
D = m D

kl 322 k kl 3

3
D = -2 n m D

kl 326 k k kl 3

2 2
D = 4m n D

kl 386 k k kl 3

(3.27a-f)

(3.27E-i)

(3.27m-r)
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for shear term, q = 4;

2 2
D = m n D

kl 411 k k kl 4

D = ( 4 4) D
n k - m kkl 412 kl 4

D = m n (n 2 - m2)
kl 416 k k k k

2 2
D = n m D

kl 422 k k kl 4

2 2
D = 2m n (m -n)

kl 426 k k k k

D = (m 2 - n2) 2 D
kl 466 k k kl 4

D
kl 4

D
kl 4

(3.27s-x)

where mk = cos(ek) , nk = sin(ek)' klDq is the unrotated and klDqij the

rotated compliance terms (e is the angle of rotation). Although it

seems unnecessary and overly complex to split D into four parts,
kl ql J

one for each material property direction, this allows different stress

nonlinear effects to be modeled in each of the four direction, which

will be developed later.

Unlike the compliance terms, kl D the relaxation times, k areq' 1'

constrained to be the same in each of the four directions which

eliminates the need to rotate them. All layers or plies are also

assumed to be made of the same material which alleviates the need to

keep track of the ply number when dealing with k . There are,
l

however, some limitations on k . There should be at least one Kelvin
1

element for every 1 ! decades of time that is being examined since the
2

effect of the Kelvin element is only felt over that time period. The

common practice is one Kelvin element, thus one relaxation time, AI,

for every decade of time. For orthotropic materials it is further

convenient to set A 1 the same in all material property directions. A
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typical Prony series might have k = I, A = I0, A = i00, etc., for each
1 2 3

ply and direction.

If all the stresses in each layer and direction were constant,

then the time dependent strain could be easily calculated at this

point by substituting the Prony series (Eq. 3.24) for each direction

into the constitutive equations relating stress and strain (Eq. 3.26)

and solve for the desired time. However the stresses in each ply can

in fact change with time which means stress is a function of the

current strain rate as well as the current strain. Even though the

restriction of constant stress was used to get the original Prony

series in characterizing the material, that restriction is not

necessarily true in the actual numerical solution process. The matrix

Eqs. 3.23, 3.2S, and 3.26 are still needed to show how the compliance

terms can be manipulated and rotated to obtain the D terms but
kl qiJ

they are not used to obtain the strain. Instead the strain and stress

equilibrium equation can be employed to calculate the strain. However

an expression for the strain without the strain rate must first be

developed.

The original differential equation, Eq. 3.21, can be rewritten as

k! {J

q=l

where
kl lJ

and
kl lJ

direction,

Dql]l ckl kl lJ

kl lJ _l

(3.28)

and klCij are the strain rate and strain, respectively,

is the stress in each Kelvin element, I, ply, k, compliance

q, and rotated position, (i,j). This equation can be
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approximated by

t÷l t 4 rklDqij__ _ t+l
C - E _=_ C

kl lJ kl iJ _ t÷l kl lJ
= o- (3.29)

At [ _kI Jk, ,J k
q=l

where At is the time step size, t+l is the new time and t is the old

time. This particular approximation is called a Backward Euler Method

(BEM) and is classified as a first order implicit method. By using an

t+1
implicit method, the solution, c , will be unconditionally stable

kl tJ

regardless of the time step size. This is not to say that it will

converge to the correct answer but it will not diverge or oscillate.

This 'unconditionally stable' characteristic only holds true for the

first and second order implicit numerical approximations [98]. Higher

order implicit methods and all explicit methods are only conditionally

stable, i.e. has a maximum time step before it might diverge.

The BEM, a first order implicit method, wil{ be examined in

detail in the remainder of this section. The second order implicit

method, calI the Backward Trapezoidal Method (BTM) is developed in

Appendix B. Equation 3.29 can be rearranged to give

or

t+l h t+l t
c 1+ =h o" + c

kl lJ [ _kI Jkl lJ kl iJ
q=l

4 t

c - D o- + lj i

kl lJ (_,l+h) kl qlJ kl lJ (At+h)
q=l

(3.30)

.t
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t+l t+l

where At = h. The unknowns are klElj and kl_lj while h, A l, and

t
D az'e given and c is known from the previous time step. The

kl qiJ kll]

total creep strain, _ci, for a particular direction, i, and layer, k,

is simply the sum of all the creep strains in that direction

3 n

c C =7. _ gt+l_

J=l 1=1

(3.31)

It should be noted that Eq. 3.30 is only for linear viscoelastic

materials. In order to include nonlinear stress effects, D needs
kl qiJ

to be modified to become a function of stress. This is easily done by

multiplying D by a dimensionless stress function which would
kl qiJ

account for any nonlinear stress effects such as

D [ (k o') (3.32)kl qiJ q

where f(v) is a stress dependent function. This type of formulation

allows the nonlinear compliance at any stress level to be scaled up or

down from the linear compliance. As an example, consider the linear

compliance S represented by a single Kelvin element

S(t) = DIl-e -t/_'] (3.33)

If the nonlinear stress function is assumed to be f(_) = (l+a_) then

the nonlinear compliance would be

• C ]D = S(t).(1+a_ 2) = D 1-e -t/;_ .(1+a_) (3.34)
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where a is a constant and v is the current stress. If the linear and

nonlinear compliance curves are Eraphed, the scaling factor, (l+av2),

is quickly identified (see Fig. 3.7). This formulation only works if

the nonlinear stress can be described by a vertical multiplication of

the compliance curves.

Vertical shifting of the basic compliance curve to account for

nonlinear stress effects is a common method of modelin E nonlinear

viscoelastic response [11,31]. Most nonlinear viscoelastic models

such as the Schapery, Findley, and other power law based models

employee this concept by using nonlinear stress functions. FiEure 3.8

shows a simple nonlinear power law with a nonlinear stress function,

f(v), and how it is scalable. Since this vertical shifting concept

works well for power law based models it should also work for a Prony

series since, for many cases, the Prony series will just be a fitted

equation to a power law model. The Prony series can be scaled by

just scaling the compliance coefficients, D, for a particular material

direction by the same amount that the power law would be scaled. Thus

all Kelvin elements, l, will be have the same nonlinear scale factor,

f (kv). However, since the stresses are different in each ply, k,
q

there will be a different scale factor for each ply.

The nonlinear stress parameter, kV, used in the nonlinear stress

function can be any function of the matrix or fiber stress states. A

common parameter for the transverse and shear nonlinear compliance is

the octahedral shear stress in the matrix which is a function of

matrix transverse stress, _, and matrix shear stress, Tm . A more12
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detailed explanation of the octahedral shear stress parameter can be

found in chapter 2. It is sufficient to say at this point that
k

will be a function of the ply's stress state, kV1, k¢2, and k_

(=kV12), regardless of the complexity.

To introduce the nonlinear compliance function into the general

formulation, substitute Eq. 3.32 into Eq. 3.30 to give

4 t

t+l __[ 1 °'t+l klCi] *_kl+h)
C ---- D *f ( (lrt+l ) + (3.35)

kl lJ kl qlj q k kl l] (_t l

q:1

Where f(v) is evaluated at t+l. Note that f(t+l) is a function of

t+l
t+l t+l and v all of which are

the future ply stress state, kVl ' kV2 ' k 3 '

t+1
unknown. Thus Eq. 3.35 can be a complex nonlinear function of

J

which necessitates the need for a numerical solution method. Equation

3.35 can be rewritten as

4

kl ! kl ql J kl ! J

q:l

h
where C = --. D

kl qlJ (k +h) kl qlj
l

t

rt _ kl lJ t
kl _ij (_ +h)

I

t+l t+l

k J kl iJ

The subscript 1 has been dropped from v because the stress is the same
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for all Kelvin elements in a particular material direction since them

are all in series. The subscript i was also dropped since stress is a

vector and not a tensor quantity. Similarly, the subscript j was

dropped from the strain. The dropping of subscripts i and j for the

stress and strain quantities, respectively, can be understood by

reviewing the matrix equations Eq. 3.22 and 3.23.

Substituting equation 3.35 into 3.31 will give the total creep

strain for ply, k, and direction, i,

k { klCql J k k J ki I J

J=l 1=1 q=l

(3.37)

For the total strain, the elastic strain also needs to be added to Eq.

3.34. The elastic strain can be modeled as a nonlinear spring in

series with the Prony series for each direction.

kl i kO I kO qiJ k k J

q=l

- t+l_

where koDqlj is the linear compliance of the spring (l=O), gg(k C J

is the nonlinear function of stress for each direction (similar to

e t+l
£(_)), and c

kO i
is the elastic nonlinear strain. Adding Eq. 3.37

and 3.38 gives

3 n

J=l I=1

kl qiJ k J kl iJ

q=l
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or

T t+l
£
I

Z t+l
+ D • t+l) cr

kO qi j k J

q=l

3 n 4

Z _ Z [ °lrq( t+l ]
= C o't+l) •

k! qi J k k J

J=l 1=1 q=l

£ _ [ 1 ]+£_[ }+ koDql J'gq(k crt+ )" (TTM E t

J=l q=l k J J kl I JJ=l I=1

(3.39)

where T denotes total strain and
T t+l T t+l
E = E

k I I
since it is assumed

that layers deform equally without debonding or damage. There are a

t+l t+l
total of 3k+3 unknowns, TC and c , but there are only 3k

i k J

equations from Eq. 3.39. The additional 3 equations come from

imposing stress equilibrium in each of the 3 stress directions

m

ON Z N
J =k=l J

(3.40)

where °N is the input load on the laminate and N is the actual load
] J

in each layer, k, when loaded. Equation 3.40 can be rewritten in

terms of stress to give

3[P+' ]Z Lk J °kt
o k=l
o" = (3.41)
J 3

k=l

where o is the input stress and t is the thickness of each ply.
J k
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This equation gives the 3 additional equations necessary to solve for

the stress and strain unknowns at t+l time.

The Eqs. 3.39 and 3.41 are nonlinear in terms of stress and are

ill-conditioned. They can be solved by an iteration technique called

the Newton-Raphson Method. Simpler direct methods such as

Gauss-Seidel can't be used since the coefficient matrix is not

guaranteed to be diagonally positive for orthotropic materials.

However, for isotropic material this is not a concern since their

compliance matrices are positive semi-definite [88]. The Newton-

Raphson takes longer to solve the nonlinear set of equations for each

iteration, since the Jacobian matrix must be calculated, but it

converges much more rapidly than the other direct iteration methods.

The complete solution process can best be understood by a

flowchart as shown is Fig. 3.9. The first three steps consist of

defining the laminate layup, load, temperature, material properties,

and calculating the rotated Prony Series parameters. For each time

step, including t=O, the basic strain and stress equations (Eqs. 3.39

and 3.41) are developed and solved, using the Jacobian matrix. After

the the global stresses and strains are known, then the local stresses

and strains can be calculated to be used in the next time step. Time

is then incremented, the next time step is taken and the loop is

started again. While simple in theory, there are still hundreds of

constants and differential equations that must be kept track of

throughout the solution process dictating the need to use a computer.

The above solution method has been programed for use on a
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Fig. 3.9 Flow Chart for NDEM Solution Method.
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microcomputer. The program is called Viscoelastic Composite Analysis

Program, or 'VCAP' and a complete explanation of its operation and

abilities can be found in Appendix C.

In summary then, the three major problems with the current

composite nonlinear viscoelastic analysis programs, nonlinear effects,

stability, and orthotropic material, have been solved by using a

differential equation formulation based on a series of nonlinear

Kelvin elements. Implementation and results of this solutions

technique are discussed in the next section.

Verification of the Nonlinear Differential Equation Method

The method of solution presented in preceding section, the

nonlinear differential equation method (NDEM), to calculate the

nonlinear viscoelastic for orthotropic composite materials needs to be

verified by comparing it to exact solutions and other solution

techniques. This section will present two simple examples, one based

on the Kelvin element and the other on the power law, of a

multilayered viscoelastic material for both linear and nonlinear

cases. The solution will be compared to the exact solution, if

obtainable, and other numerical solutions.

The first example is a simple one-dimensional two part material;

one part is viscoelastic and the other elastic. The elastic material

is modeled by a single spring and the viscoelastic material by a

spring and a Kelvin element in series, as shown in Fig. 3.10. Since

this example is relatively simple and one-dimensional, it is possible
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to find a closed form solution for the linear case. For the nonlinear

case, however, a Runge-Kutta method was employed to solve the

resulting nonlinear first order differential equation.

The linear case, assuming the applied stress, _ , is constant has
o

a closed form solution of

I I K 1 K

e = 2 -K t 2
+E K _ e 1 + _

E1 2 1 o o K 1
(3.42)

Where K =
1

EE+EE+EE
1 2 2 3 13

_(EI+ E 2 )

E+E
2 3

K-
2 g(El+ E 2)

The numerical results of the NDEM technique, both by the Backward

Euler Method (BEM) and Backward Trapezoidal Method (BTM), are shown in

Fig. 3.11 along with the exact solution and the VISLAP program

technique solution. The spring and dashpot constants were assumed to

be E 1= E2= I, E3= 0.11, _ = i, and _o is constant, equal to I, for all

solution methods. The second order BTM solution matches the exact

results closely whereas the first order VISLAP and BEM solutions are

high and low, respectively. This deviation can be accounted for by

being only a first order solution technique. It is interesting to

point out that the VISLAP solution begins to oscillate and become

unstable, as would be expected since it is an explicit solution method

whereas the NDEM, for both BEM and BTM, is an implicit method. Also



102

w""

E° iZ

U!DJIS 10101



103

notice that the step size is larEe, S steps per decade, which would be

considered the maximum step size but yet the second order NDEM is very

accurate.

The same basic model can be used for a nonlinear viscoelastic

material by simply changing E and _ to include nonlinear stress
3

effects. For the current nonlinear example, E and _ are as follows
3

o"

E = 0.1 o + 0.1 (3.43)
3 Or

2

o + 0.1 = 10 E (3 44)
_= 10 0.1 0"2 3 "

where _ is the stress in material 2 (Fig. 3.10). This type of

nonlinearity will cause the material to become stiffer as time

progresses since the stress, _, is decreasing in the nonlinear

dashpot. As the stress decreases in the Kelvin element, the spring

becomes stiffer and can ultimately carry more of the total load.

Likewise, the nonlinear dashpot will become more viscous and the

viscoelastic response will be retarded. The other parameters are

similar" to the linear case, E = E = i and v = 1. The results of both
I 2 o

the NDEM and VISLAP techniques are shown in FiE. 3.12 for the

nonlinear Kelvin element. To obtain the exact solution, one must

solve a nonlinear equation of the form

+ Kc + Kc 2 + K = 0 (3.4S)
1 2 3
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with e(o) = c

This equation is difficult to solve for a closed form solution but

good results can be obtained by using a Runge-Kutta numerical method

with small time steps. The results from a Runge-Kutta solution are

also plotted on Fig. 3.12. For a simple nonlinear example model, like

the one being examined, it is possible to use a Runge-Kutta solution,

a well proven and reliable numerical method, as a check. However, for

the general orthotropic problem, the Runge-Kutta method cannot be

used, as discussed in the proceeding sections.

Similar to the linear case, the first order solution methods,

VISLAP and NDEM using BEM, are not as accurate as the second order

NDEM using BTM. Also the explicit method, VISLAP, becomes unstable at

long time steps.

The second example case is again a two part one- dimensional

material with one part viscoelastic and the other elastic. This

viscoelastic material is modeled as a power law and a spring in

series, and the elastic material as a spring. Figure 3.13 shows the

mechanical model describing this test case.

The power law parameters used are m = 0. I and n = 0.25 for the

linear case and

o"

m = 0. I ---5-°+ 0. I (3.46)
o"
2

and n = 0.25 for the nonlinear case.

nonlinear case E = E = 1.0.
1 2

For both the linear and

The results comparing just the VISLAP and
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NDEM (BEM and BTM) methods are shown in Figs. 3.14 and 3.1S. Both the

linear and nonlinear cases show the results for all methods very

close, with the BTM between the other two methods. This is similar to

the results of the linear and nonlinear Kelvin cases discussed

earlier. There is no exact solution available to compare results and

the resulting equation can't be solved by the Runge-Kutta in a

convenient manner. However the results of both the VISLAP and NDEM

techniques are similar, giving some reassurance that the answer is

correct.

In summary, the nonlinear differential equation method (NDEM) of

solving nonlinear viscoelastic problems that involve multiple material

layers has been shown to be an accurate method and does converge to

the correct answer. The two test cases examined, Kelvin and power law

models, showed the NDEM results match the exact solution and/or other

numerical methods. The second order BTM technique proved to be the

most accurate and was stable for all time steps.

Numerical Conclusions

This chapter has looked at various methods to solve nonlinear

viscoelastic problems that deal with orthotropic materials such as

fiber reinforced composites. Earlier methods, such as the VISLAP

computer program algorithm, was examined and some of the deficiencies

discussed. The main three problems of these methods were I),

stability of the solution technique, 2), time step size stability, and

3), solution time length and computer memory storage. Two other
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methods were examined in detail, Volterra Integral and the Zienkiewicz

method, plus a new method, the Nonlinear Differential Equation Method

(NDEM) was developed to try to overcome some of the deficiencies.

The Volterra Integral allowed the implementation of higher order

solution techniques but it had difficulties solving singular and

weakly singular compliance functions. The power law compliance

function, which is weakly singular, was solvable only with very small

time steps. This method also needs an ever increasing amount of

computer time as the solution process goes further out in time,

similar to the VISLAP method. This was due to the hereditary type

inteEral solution process which must recalculate the total integral

for each additional time step. This method was found to be

unacceptable for reasons of computer time needed and accuracy.

The second method examined was the Zienkiewicz solution technique

which requires the viscoelastic response to be modeled by a Prony

series. This method works well for linear viscoelastic isotropic

materials and small time steps. The biggest advantage of this

technique is that the solution algorithm can be written in a recursive

fashion which does not require the recalculation of the past results

like the VISLAP and Volterra Integral methods. This allows the

solution at long times to be done efficiently and quickly. One

disadvantage of the original formulation is the limit on time step

size since the method uses an explicit solution technique. Thus the

solution can become unstable and diverge from the correct answer.

Others, Booker and Snyder, have extended Zienkiewicz formulation to be



III

stable for large time steps.

To overcome the above deficiencies a new method, NDEH, was

developed. This method requires the viscoelastic response be

described by a modified Prony series which allows nonlinear stress

effects to be included. The differential equations that model each of

the Kelvin elements in the Prony series, are then solved

simultaneously. By using the basic differential equations, an

implicit solution method can be used. This causes the solution

process to be unconditionally stable for any time step. While others

[88,106] have also formulated stable algorithms for viscoelastic

problems, they were only for linear isotropic materials whereas the

NDEM is for nonlinear layered orthotropic materials. The general

method of solving the nonlinear simultaneous equation used was the

Newton-Raphson method which assures convergence even if the

coefficient matrix of the equations is not positive definite, which is

generally the case for orthotropic composite materials.

The NDEM technique was shown to be accurate and stable on two

test cases, Kelvin and Power law based, for both linear and nonlinear

conditions. The advantages of NDEM is that it is stable for all time

step sizes, the solution algorithm is stable and converges to the

correct solution, and the computer time is minimized.



Chapter 4

TESTING METHODS

One of the main objectives of this study is the characterization

of unidirectional Kevlar/epoxy composite laminae. This information

then becomes the foundation or database for use in the numerical

procedure to predict the viscoelastic response of a general laminate.

Since the experimental data will be used to make further predictions,

the testing methods must be reliable and well understood to enhance

the accuracy of the initial data which will ultimately affect the

prediction accuracy. The testing methods that are to be discussed in

this chapter are: testing equipment, specimen preparation, specimen

size, strain measuring device (strain gages), mechanical conditioning

and thermal conditioning.

Testin_ Equipment

The creep testing method used in this study was static tensile

tests. The equipment used for this purpose were two different

dead-weight creep frames which used a lever arm loading mechanism.

The majority of the tests, both long and short term, were done on

a five station creep frame that was designed and built in-house [?5].

The frame was constructed from channel and I-beam weldment and used

hardened tool steel (R 58-60) for all knife edges and mating
C

surfaces. All five of the lever arm loading mechanisms had a I0:I

112
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ratio with a design maximum applied load of 13,340 N (3000 ib ).
f

However, during the testing process, the maximum load applied was only

4450 N (1000 Lb ). At higher loads, the knife edges tended to twist
£

or rotate during loading. There was an individually controlled oven

for each of the five frames with an accuracy of ±1 ° C which used

resistance heating elements.

For Creep tests needing high loads, such as unidirectional 0 °

specimens, an Applied Test Systems (ATS) creep machine was used. This

creep machine has a maximum capacity of 88,960 N (20,000 Ib ) and has
f

an automatic loading system and load re-leveler. The lever arm for

this frame is adjustable to either 3:1 or 20:1 ratio. There is an ATS

series 2912 oven attached and temperatures were maintainable to

±I.I ° C.

Both frames use friction type grips to load the specimens.

However, the five station creep frame has double pivot, tuning

fork-type grips which allowed the specimen to rotate at ends and

placed the pivot points at the specimen/grip junction. The double

pivot system minimizes any bending moments that might be induced by

the gripping mechanism and is especially convenient for nonsymmetric

laminates and off-axis unidirectional lamina. The ATS creep frame

used the conventional pin-thru-the-grip mechanism to load the

specimen.

Creep and creep recovery strains and test temperature were

measured using a computerized data acquisition system. The computer

was a Hewlett-Parkard (HP) series 9000 model 300 computer system which
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used a HP 3497A Data Acquisition Control Unit, HP 3457A Multimeter,

and HP 6214B Power Supply Unit. A program to monitor five creep

frames simultaneously was written for this study which allows the user

to stop and start any single test without affecting other tests.

Besides strain gage readings, the program monitors the temperature

level of the test specimen in the oven by using thermocouples.

The data acquisition system takes five readings for each strain

or temperature measurement, disregards the first and last reading, and

then averages the remaining three together to give the final recorded

strain or temperature. The sampling rate is variable and can be

specified by the user with a minimum rate of I/sec and a maximum of

I/day. The data is stored in memory and printed on paper for each

strain and temperature reading along with the current time of day,

current creep or recovery time, frame number, and current power supply

voltage. After or during a test the complete printout of test results

can be obtained. By using a computerized data acquisition system,

quick and systematic compilation of creep data was possible.

especially at the beginning of the tests where creep rates are highest

and most critical.

Strain Measuring Devices

There are two common methods of measuring creep strain of

composite materials, resistance strain gages and extensometers, each

with their own advantages and disadvantages. There are important

points that need to be considered in deciding which method to use are



116

the cost, accuracy, and usability. The initial purchase price of

extensometers is higher but they can be reused indefinitely whereas

strain gages are relatively inexpensive to purchase, but they cannot

be reused and gage installation can be costly an time consuming.

Aside from the initial purchase cost, extensometers are easier to use

and attach to the specimen which further reduces its operating cost.

Therefore, from the point of view of cost, extensometers are generally

cheaper per test if a large number of tests are performed.

The second and more important consideration between the

extensometers and strain gages is accuracy. Extensometers are

generally only accurate to the tlO g-in/in where as strain gages are

in the ±I g-in/in range. Since creep needs to be monitored very

closely for longs periods of time the increased accuracy is necessary

for reliable results. An additional problem with extensometers is the

bending moment induced in the specimen from the extensometer's own

weight. If the material is stiff and a high load is applied then the

bending moment is insignificant, but for the Kevlar/epoxy at

moderately high temperatures, tests revealed that the bending moment

can be significant. For example, at 90 ° C, the extensometers

physically twisted an unidirectional 90 ° specimens when tested. On

the other hand, strain gages tend to reinforce the gage section of the

test specimen with its epoxy backing and metal grid work [107-108].

This reinforcement, although generally small can be important for soft

material.

The third aspect in selecting a strain measuring device is the
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usability or, in other words, can it measure the strain in the

direction needed. Strain gages are very versatile and can be used to

measure strains in almost any direction whereas extensometers are

generally restricted to axial and transverse strain measurements.

This is a problem when measuring shear strains from the i0° off-axis

test since the strains must be measured in three directions which is

not possible with extensometers.

Due to the accuracy limitation and usability problems with

extensometers, strain gages where chosen to be used in this study.

Furthermore, test equipment for multiple extensometer monitoring,

which was necessary to complete the large number of creeps planned,

was not available at the time of this study. As a comparison of the

extensometers and strain gages, creep and creep recovery tests were

carried out on four different laminates using both methods. Agreement

was geod between methods for all samples except at high temperature

and near failure which should be expect.

During preliminary creep tests, the type of strain gages,

adhesive system, and adhesive cure temperature were found to a/'fect

the strain readings. These preliminary creep tests revealed that in

some cases the strain would increase, as expected, but then later

decrease without any load changes. This phenomenon, termed reverse

creep, was identified as an strain gage adhesive creep problem. The

adhesive system used on the specimens that experienced reverse creep

was M-Bond 200 (Sold by Micro-Measurements) cured at room temperature.

Even though the specification published by the manufacture indicate an
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operating temperature range of up to 65 ° C, if the adhesive is used

above the cure temperature for creep tests, one can experience

inaccurate strain readings. To eliminate reverse creep, the adhesive

should be a high temperature adhesive and cured at least 20 ° C above

the maximum expected test temperature [109].

For this study all gages used where M/M EA-O6-xxxxx-350 type

gages where xxxxx is the size and style which varied for each of the

different types of specimens tested, i.e. unidirectional 0°, 90 °, and

I0° or laminates. 350-Ohm resistance gages were used verses the

120-Ohm gages to reduce localized heating of the specimen around the

gage area [79].

Specimen Preparations

All specimens used in this study were supplied by E.I. DuPont De

Nemours & Company, Inc. (DuPont) in two batches. The first batch of

specimens (received October 1986) were fabricated and cut by DuPont

and the second batch (received November 1986) were fabricated by

Dupont in 24" by 12" sheets and subsequently cut by the author at VPI

with a slow speed diamond saw. The specimens were stored in sealed

plastic bags until used.

Th_ unidirectional specimens used for the lamina characterization

(0°, I0°, and 90 °) were 1/2 inch wide and 7-9 inches long. The

laminate specimens were generally 1 inch wide and 7-9 inches long.

The laminates, especially three or more fiber directions, were wider

to minimize the free edge effect which will be further discussed later
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in this chapter.

In preparation for strain gage application, the specimens were

lightly roughed with 400 grit sand paper to insure a good bonding

surface. Normal strain gage bonding techniques were then followed in

the application of the gages. Both Micro-Measurements M-Bond 600 and

AE-15 high temperature adhesives were used to adhere the gages.

Strain gage clamps and pressure pads were used to apply the required

pressure while curing took place.

The specimens were cured in an conventional type oven at 121 ° C

for 150 minutes. The oven temperature was increased and decreased at

approximately 3 ° C per minute. The cure temperature could not be

higher than 121 ° C since that was the temperature at which the

composite epoxy was cured. Some early specimens, which were cured at

higher temperatures (up to 150 ° C), had debonding and bubbles visible

and were not used. To insure the largest possible temperature range

for the thermoviscoelastic characterization of the composite, the

adhesive was cured at 121 ° C.

Strain gages were mounted on both sides of all specimens to

average out any bending effects that might occur due to eccentrically

loaded specimen. After the gages were mounted the specimens were

placed inside a desiccator until actually used in a creep test,

generally 3 to S days later.
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Mechanical Conditioning of Test Specimens

A major concern in any test program with composites is the

repeatability of the results. This is especially true for

viscoelastic characterization tests where time is involved. Ideally,

one should be able to conduct two tests on the same specimen and

obtain the same creep and creep recovery curve, assuming the test

parameters such as temperature, stress level, humidity, etc., remain

the same. Even with the above parameters constant, two composite

creep tests are rarely the same since the first test will change the

composite slightly, thus affecting the second test. This difference

between tests has been associated with straightening slightly crooked

or irregular fibers, plastic yielding and permanent deformation of the

matrix, isolated debonding of matrix and fibers, etc., that are caused

during the first or second loading cycle. This raises the need for

mechanically conditioning test specimens to insure repeatable and

reliable tests.

Many principal investigators have used mechanical conditioning

[30,35,39,82] in order to produce consistent creep results. Others

argue that mechanical conditioning permanently changes the material by

matrix yielding and local geometry modifications [78]. This is a

special concern for those applications that will receive only one

loading, and the virgin material needs to be characterized. Another

argument against mechanical conditioning is the difficulty encountered

when performing long term creep tests. For even a moderate length

test of one week would require two to three tests of the same length



120

to properly condition the sample and with the accompanying recovery

time the total test could easily take three to five months.

Regardless of the above arguments for or against mechanical

conditioning, one overriding factor is the finite number of test

specimens and the need to perform multiple tests on the same specimen.

For example, to effectively use the TTSP to obtain master curves the

same sample should be used for all temperature levels. If different

specimens are used at different temperatures, the experimental error

or scatter between samples for composite material are great enough, in

most cases, to effectively make shifting of the individual compliance

curves impossible. Also the same sample needs to be used when

determining nonlinear stress effects for the same reason. Besides, if

a different specimen is used for each test, the total number of

specimens required would be unwieldy and too costly to prepare each

one with strain gages. One could argue that when the temperature or

stress level is increased from a previous test, then the material is

virgin again since the material has not experienced that higher stress

or temperature level. However, generally most mechanical conditioning

of the material takes place on the first loading, regardless of stress

level (if at least I0_ of ultimate) or temperature. Thus when testing

for stress dependency of temperature effects and the same specimen is

used for the whole series or set of tests, then the specimen is

receiving mechanical conditioning as the tests are performed.

It was concluded that some type of mechanical conditioning should

be employed since, I) the TTSP would be used extensively to
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characterize the material and thus multiple tests would have to be

performed on the same specimen, and 2) it would be too costly to use a

new virgin specimen for each of the thousands of tests necessary. The

most common method of conditioning is to run multiple tests for the

same length of time as the real test [30]. As mentioned earlier this

can take a considerable amount of time. Jerina, at el. [II0] modified

the conditioning tests to vary in length as, shown in Fig. 4.1b, until

the last conditioning test is equal in time length as the actual test.

Although this reduces the total test time, it still can be rather

lengthy. A third conditioning method would be to simply load and

unload the specimen to the expected stress level without holding the

stress load for any amount of time. This has the advantage of being

performed in a reasonable amount of time but the disadvantage of not

conditioning the specimens in a viscoelastic manner. This method was

used successfully by Brouwer [39] in testing graphite/epoxy specimens

and is shown in Fig. 4.1a.

The method proposed by Brouwer was thought to be acceptable as a

mechanical conditioning method for this study. To better understand

that method for Kevlar/epoxy laminates, which are used in this study,

testing was carried out on two types of laminates, [±45] and
2s

[902/45/-45] , both 8 plies thick. Two sets of specimens of eachs

laminate type were used, one set had mechanical conditioning, as per

Fig 4.1b, and the other did not. The mechanical conditioning

consished of 5 short (30 seconds) loading and unloading cycles. It

was believed that if there is any fiber realignment, fiber crack, or
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Fig. 4.1b Conditioning Cycle as Proposed by Jerina [110].

Load Creep
Test

I / :_....
30 60 120 150 180

Time(sec)

Fig. 4.1o Conditioning Cycle as Used on Prelimonory Conditioning

Tests and Similar to Method Proposed by Brouwer [39].
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micro-debonding, it would take place with short test as well as long

tests.

The results of the mechanical conditioning tests were surprising.

First, the [90 /45/-45] seemed not to be affected by mechanical
2 s

conditioning, as shown in Fig. 4.2. Other stress and temperature

levels showed the same results for the same laminate type. However,

the [±45] laminates, at the lower temperature of 38 ° C, showed
2s

mechanical conditioning stabilizes the creep (Fig. 4.3) whereas at the

higher temperature of 51 ° C the short loading method of conditioning

seems to have had no effect (Fig. 4.4). This temperature effect could

be explained partially by thinking of mechanical conditlonin E havin E

two parts, elastic and viscoelastic. At the lower temperatures (the

glassy region), the specimens need mechanical conditioning primarily

for stabilization of the elastic response, but for higher temperatures

(transition or rubber region), specimen must be both viscoelastically

as well as elastically conditioned. Mechanical conditioning of

unidirectional laminates, mainly 0°, i0° and 90 ° specimens, were also

examined and found to be insensitive to mechanical tests.

Possible conclusions that could be reached by the mechanical

conditioning tests are I) only certain laminates need conditioning,

mainly two fiber direction laminates, and 2) the simple loading and

unloading does not work for all cases, especially high temperature

tests. Therefore, this study performed mechanical conditioning on all

specimens for the same length of time that the actual creep test would

be loaded. However, the number of conditioning tests was allowed to
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vary. Conditioning tests were performed on a specimen until the creep

was approximately the same (±2%) as the preceding test.

Generally, the creep and creep recovery strain for the first

conditioning test and the actual test were the same for unidirectional

laminates, and laminates with three or four fiber directions. Again,

the two fiber directions needed three to four conditioning tests,

which is thought to be due to the scissoring effect the two direction

ply material exhibit when loaded. One exception to the above

conditioning plan is for the long term (2 to 4 weeks) tests which

experience only multiple short term conditioning tests since long term

conditioning tests were impractical due to time considerations.

Thermal Conditioning

Similar to mechanical conditioning, thermal conditioning is

performed to insure reproducible results on any one specimen by

exposing the specimen to the test temperature several times before the

actual mechanical test. This could be a particular problem for this

study, since the same specimen is tested at various increasing

temperatures in order to use the TTSP and construct a master curve.

If the tests are affected by past thermal exposure, then the TTSP can

be not be employed without thermal conditioning.

Since all specimens were exposed to 121 ° C for 150 minutes in

order to cure the strain gage adhesive and post cure the specimen it

was felt that this would suffice for thermal conditioning. Actual

thermal conditioning tests were not performed because of the
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difficultly in separating the mechanical conditioning from the thermal

conditioning in any type of test procedure. However, before all

tests, the specimens were exposed to the test temperature for

approximately the length of the test, except for long term tests. It

was felt that thermal conditioning is not a problem except at

temperatures near the cure temperature (121 ° C) of the laminate.

A more severe problem that is associated with thermal

conditioning is aging. The physical material properties of polymer

based material systems have been shown to exhibit aging effects

[1,111]. Since both the fibers and resin are polymeric based, they

should be affected by time. Other investigators of viscoelastlc

response of composites have mentioned aging as a possible mechanism

for the long term predictions not matching the actual test results

[73,76]. Since the purpose of this study to investigate only the

time-temperature effects on Kevlar/epoxy laminates, aging was not

examined. Furthermore, long term tests agreed well with predictions

(chapter 7) which minimizes the concern. The aging phenomenon should

be investigated in more detail, particularly how it effects

viscoelastic response.

Sample Width and Fiber Truss Effect

The width of the test specimen can be an important factor in

measuring and predicting viscoelastic response of reinforced fiber

composite laminates. If the test specimen is narrow, the edges

effects can significantly affect the viscoelastic response. This is



129

especially true of three or more fiber direction laminates such as

[90 /46/-46] which can form a fiber truss network of stiff fibers.
n s

This causes prediction problems since the numerical procedure

(chapter 3) assumes all normals to the laminate remain normal after

the load is applied as per classical lamination theory [19].

Predictions for laminates with more than two fiber orientations

have been accurate at short times, but have fallen well below the

experimental results obtained on narrow (12 mm.) specimens with three

fiber directions. Further testing in this study has helped establish

that relaxation of the fiber trusses along the free edges of narrow

specimens is much more significant for time-dependent behavior than

under short term conditions. Insights into the design of laminated

composites for long term loading and certain precautions for

experimental evaluation of time-dependent properties are also given in

this section. By using wide specimens the effect of the edges can be

reduced greatly. The section will present test results confirming the

specimen width effect.

The compliance predictions of the numerical procedure (chapter 3)

have been quite good for laminates which consist of only two fiber

directions. Figure 4.6 illustrates the degree of fit which has been

obtained for these types of layups for a graphite epoxy T300/934

composite laminate where the fibers are assumed to be non-viscoelastic

[74]. This plot is for a T300/934 Gr/Ep cross ply laminate which is

loaded with a uniaxial load applied IS ° off axis from the 0 °

direction. The degree of fit is quite good and one should note that
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the predictions for the compliance at the longer times indicate a very

strong dependence on the applied stress level although this effect is

quite small at the short times. This serves to caution against the

use of static results to estimate the long term behavior unless the

viscoelastic processes are adequately recognized. One should further

note that the creep is quite large -- more than 4 times the static

strain after only one week of loading (at an elevated temperature).

These large strains are typical of laminates consisting of only two

fiber directions because the fibers tend to scissor and result in very

large deformations. Because these laminates are highly susceptible to

large viscoelastic deformations, they should be avoided for

applications where it is possible for the load directions to deviate

from the predominant fiber direction. A typical application of such

two fiber orientation systems has been for piping and various pressure

vessels. Such designs may be adequate where the stress state is well

behaved, but mounting brackets, fittings, and bending or twisting can

introduce long term loads which cannot be adequately carried

indefinitely.

The numerical predictions obtained for the graphite epoxy

laminates consisting of three (or more) fiber directions have been

less satisfactory [74]. Because of the assumptions of classical

lamination theory, the program assumes that normals through the

laminate remain straight and normal. When the fibers are present in

at least three directions, the CLT assumptions imply that the fibers

act as pinned trusses which form a vast network of triangular truss
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elements. Because triangular trusses are rigid, the program

predictions tend to asymptotically approach an upper limit which we

have referred to as the fiber truss limit. This theoretical limit can

be obtained by assuming that the matrix properties totally relax,

thereby forcing the elastic fibers to carry all of the load. Actual

experimental results and predictions are shown in Fig. 4.8 for a

T300/934 laminate with three fiber directions [74].

The matrix stress relaxation and load shifting to fibers will

generally take place over a long period of time. As an example, the

relaxation of the matrix octahedral shear stress, which is a function

of the lamina transverse stress, _2' and shear stress, v12' for the

laminate used in Fig. 4.6 takes place over 18 to 19 decades of time

(see Fig. 4.7). It should not be assumed that the individual lamina

stresses, v,, _ and v12' monotonically approach zero stress. Figures

4.8 and 4.9 show the transverse and shear stresses in each ply.

Notice that the transverse stresses in the individual plies can

actually change from tension to compression, as the stress approaches

zero. This fluctuation of stresses can be attributed to the different

relaxation rates that each of the directions (transverse, shear, and

fiber) _und ply orientation exhibit. The shear will shed its stress

faster than the transverse direction, thus causing the transverse

stress to actually pick up load in the first few decades and then shed

this load later after the shear has totally relaxed.

While the numerical procedure predicts the fiber truss effect,

narrow (13mm) specimens with three fiber directions may exhibit creep
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which is considerably greater than that predicted. This concept is

illustrated schematically in Fig. 4.10 for a composite system with

non-viscoelastlc fibers. Much of the discrepancy apparently arises

because the assumptions of lamination theory are not valid near the

free edges of these specimens. CLT does slightly over-predict the

static modulus of narrow specimens, but the time dependent deviation

can be much larger. Since the interlaminar shear strains are

controlled by the viscoelastic resin, this edge effect can increase

significantly at longer times. Experimental data for Kevlar/epoxy

composites was collected to illustrate the effect of specimen width on

the measured viscoelastic response of laminated composites which will

be presented later in this section. As specimen width is increased,

the ratio of area in proximity to the free edge with that at the

specimen interior decreases, and one approaches the predictions

obtained from the numerical procedure. The implications are twofold:

I) the program predictions appear to be valid for wider specimens and

structural components, and 2) care must be used in selecting specimen

size for creep measurements in the laboratory.

This fiber truss effect has several consequences for the design

of composite structures for long term durability. Specifically, the

model can provide insights for designing laminates to provide better

resistance to long term deformations. It is well known that the

stiffness and strength estimates predicted by classical lamination

theory and measured experimentally can be significantly higher than

the corresponding predictions from a rule of mixtures or netting
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analysis because of the constraint imposed by the plies on one

another. From a viscoelastic standpoint, much of this increased

stiffness and strength can be attributed to the presence of the fiber

trusses imposed by three or more fibers and the assumptions of CLT.

These assumptions that normals remain straight and normal can be

rigorously demonstrated for regions away from free edges and where the

applied stress field is relatively uniform and the individual plies

have uniform properties in plan form. At the free edges, these

assumptions are not valid, and yet for many practical structures, the

region affected by the free edges is relatively small. Obvious

examples are aircraft wing skins which are bolted at the edges, and

tubular structures. This ignores the localized behavior around holes

and cut-outs, but addresses the overall properties of the structure.

Obviously the localized effects are very important for failure

analysis, but they have less relevance for compliance of the structure

as a whole.

Because the matrix properties are often much more viscoelastic

than the fibers, one would expect that the laminates will be much more

time dependent in directions which are not dominated by fibers.

Figure 4.11 illustrates the predicted response of a [45/-46/90 ]
XS

laminate (T300/934) as x is varied from OZ to 30Z of the total

laminate ply content. These predictions are based on the properties

obtained for the load applied in the 0° direction. The compliance at

short times is 40Z greater for the laminate with no 90 ° plies than for

the case where x = 3OZ. While this difference is not small, one notes
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that the response after ten weeks is estimated to be more than 200Z

greater than the laminate with 30Z 90 ° plies. One should also note

that only 3Z 90 ° plies is sufficient to reduce this difference by a

factor of two. The ability of a few 90 ° plies to significantly

increase stiffness in the 0° direction is even more pronounced for

time-dependent behavior than for the static case. Again these

predictions caution the designer about using short term behavior to

infer long-term properties. The wide divergence appears quite slowly,

but results in long term behavior which is grossly different than

initial observations would imply.

Another example is illustrated in Fig. 4.12 for a more fiber

dominated type of laminate. The [0/90] laminate may be typical of
ns

certain laminates which have been used widely for pressure vessel

applications and is similar to many of the minimum thickness skins for

aircraft which are fabricated from woven material. Consider the case

where a uniaxial load is applied at small angles away from the

principal material directions. Although the actual loading is often

biaxial, this loading situation will illustrate the point. Figure

4.13 shows that the addition of only 4% (45/-45) plies can

significantly reduce the time dependence of the laminate. Figure 4.14

suggests that the time dependence is minimal when the percentage of

(4S/-45) plies is increased to I0%. Again one should note that the

observations at short times could lead to grossly non-conservative

estimates of long term behavior.

To illustrate the general validity of these predictions, tests
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have been run on several specimens made of Kevla_/epoxy. Figure 4.15

shows the significant effect of the third fiber direction on 25 mm

wide specimens of Kevla_/epoxy at 82 ° C. The specimens were loaded to

produce the same initial strain in each. The load on the [±45]
2s

specimen was 3.0 MPa, and the load on the [45/-45/902] s specimen was

20.0 HPa. Note the extreme divergence of the laminate with only two

fiber directions. The initial compliances were different by a factor

of nearly seven. This occurred because at the higher temperature, the

short time response was shifted YaP to the right on a figure such as

Fig. 4.12.

In an evaluation of the width effect, data w_s collected for

specimens of different widths with layups of [±4512s and

[45/-4_/902] s, the results of the latter being given in Fig. 4.16 and

4.17. There is a trend for the compliance of both laminates to be

somewhat laPger for narrow specimens than fop wider specimens. This

width effect is more pronounced for the laminate with three fiber

directions as would be predicted by an understanding of the

interaction of the free edges and the fiber truss effect. While this

effect was fairly small for these laminates, the width effect should

be greater as the laminate compliance reaches the fiber truss limit.

Also, Fig. 4.18 confirms the fiber truss concept by demonstrating

almost no width effect for only two fibers direction laminates, as

would be expected.

The effect of the free edge has been shown to be more significant

for long term compliance of laminates than might be predicted by short
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term observations. This free edge effect can cause narrow specimens

to be significantly more compliant than CLT would predict. Therefore

in this study all laminate specimens of three or more fiber angles

were 1 inch wide to minimize the viscoelastic edge effect. For lone

term durability, it has been demonstrated that specimens with three or

more fiber directions have dramatically less creep than laminates

consisting of only two fiber directions, even though the difference

for short term loading is much smaller.



Chapter 5

THERMOVISCOELASTICCHARACTERIZATIONOFKEVLAR/EPOXYCOMPOSITE

There are several obstacles in characterizing and predicting the

long term viscoelastic properties of a FRPcomposite laminate. First,

it is not practical to perform long term tests of the same duration

that the product might experience in service. Although the product

might be in service for 20 years, tests of more than a few weeks are

difficult and expensive to perform. Furthermore, FRP composites are

orthotropic at the lamina level, thus requiring the determination of

four material parameters instead of the usual two for an isotropic

material which adds to the total number of tests necessary. These

problems can be reduced to manageable levels by using the

Time-Temperature-Superposition-Principle (TTSP), which was presented

in chapter 2, to characterize the long term response of the

unidirectional lamina for all four material properties.

This chapter will show how the TTSPhas been successfully applied

to an orthotropic composite material to obtain long term lamina

viscoelastic property data from short term tests. The material system

tested was madefrom Kevlar 49 fibers and Fiberite 7714A epoxy. This

composite system was chosen since Kevlar fiber are viscoelastic in the

longitudinal direction. By having viscoelastic fiber in a

viscoelastic matrix all four material properties will be viscoelastic

and this insures a viscoelastic orthotropic material. A second reason

151
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for examining Kevlar/epoxy is due to its increasing use in industry

and the current lack of understanding of viscoelastic properties of

composite made from Kevlar.

The results obtained in this experimental phase of the study wiil

be used in the numerical model developed in chapter 3 to predict long

term response of any _neral laminate constructed from the

Kevlar/epoxy composite system. Three basic results will be generated

in this chapter for each of the four material property direction.

One, a master curve for general linear viscoelastic response will

obtained. Two, a shift factor function will be generated. And,

three, the nonlinear viscoelastic response will be presented.

General Stress-Strain Response

Before extensive viscoelastic testing

unidirectional specimens were tested for

was performed, sample

ultimate strength and

stress-_train behavior at a high loading rate. This information w_s

basically used to determine the stress levels for the viscoelastic

tests and to verify the basic material properties as published by the

DuPont, the supplier of the specimens. The results of these tests for

the fiber direction, S and transverse direction, S are shown in
11 22

Fig. 5.1.

The ultimate stress for the fiber direction, v, and transverse
u I

direction, u_' are 1300 MPa (188.6 KSI) and 12.3 MPa (1.88 KSI),

respectively. The _ is comparable with the published ultimate
u I

tensile strength of Kevlar/epoxy [112] of 1379 MPa. The slight
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decrease is could be due to the gripping mechanism not being the

optimum type, possible slight misalignment, and experimental error.

The v is considerably less then the normal transverse strength of
u2

28 MPa reported by DuPont [112,113] but the same for the results

reported by Tsai of 12 HPa [114]. The same results of low
u2

strength were experienced in the viscoelastic creep testing done in

this study where ¢r2 of 10 MPa or more would fail the specimen in a

delayed rupture mode. While the shear strength was not tested

directly, unidirectional I0° off-axis specimens were tested for

ultimate stress since these type specimens were used in the

viscoelastic test. The ultimate specimen stress, _ , was 164 MPa
ux

(23.8 KSI) which is lower then the predicted strength of 210 MPa for a

10° unidirectional specimen load at 0° using ultimates given by Tsai

[114]. If the specimen was slightly misaligned, say 12° instead of

lO°off-axis, then the predicted ultimate would be only 162 MPa. Thus

the lower strength couid be due to slight load misalignment. In

summary, the ultimate stress loads for the 0°, 10°, and 90 ° specimens

were found to be 1.30 GPa, 164 MPa, and 12.3 MPa, respectively. These

ultimates were used only as guidelines to base the stress level

selection for the viscoelastic creep tests.

Accelerated Testing Using TTSP

The validity of the TTSP has been well established for polymeric

materials as a means to accelerate time dependent testing [I]. Since

many fiber reinforced composites have a polymeric based resin for the
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matrix material, it is reasonable to expect these composites will also

be viscoelastic and that the TTSP could be used for accelerated

testing. Furthermore, Kevlar fibers are also viscoelastic which

increases the overall composite viscoelastic response and at the same

time complicates the application of TTSP to composites.

Brinson, et al. [72] originally proposed an accelerated

characterization procedure for laminated materials. It was suggested

that a minimal amount of short-term tests could be performed on the

unidirectional material at different temperatures, stress and moisture

levels and then horizontally shifted to construct master curves using

theories such as TTSP, TSSP (Time-Stress-Superpositlon-Principle) and

Tlc_P (Time-Moisture-Superposition-Principle). They showed that

graphite/934 epoxy composite lamina can be characterized for long

times from short term tests by using temperature and/or stress as the

accelerating factor [73,76]. Results for other laminated composites

under various load and temperature levels can be found in Refs. 67 and

115.

Because the individual lamina of FRP composites can be considered

to be orthotropic, four independent material constants that relate

stress and strain (assuming a state of plane stress) need to be

determined. These constants can be functions of time, stress level,

temperature, moisture, aging, and other environmental factors [30].

The stress-strain relationship or constitutive equations can be

written as
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E

_12

Sit(t, T, _, M) $12(t, T, _, M) 0

$12(t, T, _, M) $22(t, T, _, M) 0

0 0 S (t, T, _, M)
66

(5. i)

where Sit , $12 , S22 , and S66 are the compliances in the fiber

direction, transverse/fiber coupling direction, transverse direction,

and in shear, respectively. Each of these terms can be determined

from a unidirectional lamina through experimental testing. For some

FRP composites, such as graphite/epoxy, the fibers are essentially

elastic and thus Stl and $12 terms are time independent. However, for

Kevlar/epoxy which was used in this study, all four terms are time

dependent and must be determined. The method used to determine these

compliance terms were static creep and creep recovery tests on 0°,

90 ° , and I0° unidirectional lamina specimens as described in

chapter 4. The master curves were constructed from short term tests,

and then a viscoelastic model was fitted to the master curves.

Linear Viscoelastic Characterization of Kevlar/Epoxy

To construct the master curves by using TTSP, short term tests,

15-20 minutes, were first conducted at various temperature levels but

at the same, constant stress level. The same test specimen was used

at all temperature levels for each set of short term tests in order to

assure consistent and shiftable results. Three to four different

samples, each at a different stress level, were tested in this manner

for each direction, i.e., $11, $12, etc.
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The four stress levels tested on the 0 ° specimens for the S
II

compliance were 83.7, 193, 298, 443 MPa (6.4X, ISX, 23X, and 34_ of

ultimate, respectively). The individual creep curves for all

temperature levels are shown in Figs. S.2-S.S. All four stress levels

showed an constant creep rate at every temperature levels.

The short term curves were then shifted to construct master

curves and to determine the shift factor function (see following

section). The shifting was done by use of a microcomputer based

program called 'ACS' (Automated Curve Shifting) written for this study

that employs both numerical and graphically shifting methods (see

Appendix D). The constant creep and consistency between tests for the

S** compliance facilitated the curve shifting.

The master curves that resulted from the shifting process for S
II

are shown in Fig. S.6. To identify the true perspective and

similarity between tests and stress levels, the full scale is shown in

Fig. S.7. The compliance in the axial direction is nearly linear in

log time, even at long times, for all temperature levels which agrees

with test results on single Kevlar fibers obtained by Horn, et al,

[83] and by Ho, et al. [3S].

The fiber/transverse coupling compliance, S12, is obtained from

loading a 0 ° unidirectional specimen and measuring the strain in the

transverse direction as was explained in chapter 2. This allows the

S11 and 512 compliance to be obtained from the same specimen during

the same test by mounting strain gages transverse to the fibers while

loading in the fiber direction. Therefore, the stress levels were the
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same as for $11, 83.7, 193, 298, and 443 MPa, as were the temperature

increments. The individual creep curves are shown in Figs. 6.8-6.11

for each stress level.

Similar to the S compliance, the master curves were constructed
11

by using 'ACS' which are shown in Figs. 6.12 and 6.13. The master

curve, by definition, is negative and continues to decrease with

increasing time. For the first six decades of time the master curve

is smooth and continuous but then starts to vary slightly. Although

the reason for this is not fully understood it could in part be due to

the difficulty to obtaining the S compliance term. To calculate
12

$12, the strain in the transverse direction of a 0 ° unidirectional

test specimen must be measured when loaded in the fiber direction.

This requires a very high load in the fiber direction to detect any

strain change in the transverse direction.

The individual creep test results for the transverse direction

compliance, $22 , are shown in Figs. 6.14-5.17 for load levels of 1.43,

3.61, 6.30, and 7.47 MPa. These curves were shifted to construct the

master curves shown in Fig. 6.18. The compliance in the transverse

direction, $22 , for the master curves is more in the form o£ a power

law than the previous two compliance terms. Only the two lower stress

levels, 1.43 and 3.61 MPa, are distinctly visible through the entire

spectrum of the viscoelastic response. The remaining two specimens,

at higher stress levels, failed prior to reaching the tenth decade of

time but they match the lower two stress levels up to the failure

point. The compliance master curves at 1.43 and 3.61MPa indicates a
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nonlinear stress effect, but the 5.30 and 7.47 MPa stress levels do

not continue the same trend. One possible reason for the difference

between compliance curves is that different specimens were used for

each stress level which can cause scatter. Later, a single specimen

will be tested at different stress level with the temperature held

constant, to identify the nonlinear stress effect.

A unique characteristic of the S term, not evident in the other
22

compliance terms, is the leveling off of the compliance at long times.

This conforms to the physical properties of most polymer based

materials where they exhibit distinct glassy and rubbery plateaus

where the compliance remains fairly constant over time. Since there

was no vertical shifting done, the plateau effect seems to exhibit

some scatter but the effect of entering into the rubbery region is

evident. The characteristic in the rubbery region could not be

investigated further due to specimens failing at the high temperatures

(_I00 ° C). Another possible cause of the leveling off of the

compliance is the adhesive used to adhere the strain gages could be

creeping. The high temperature, I01.3 ° C, is the upper limit for the

recommended temperature range.

The I0° unidirectional off-axis specimens used to calculate the

shear compliance, Sss , were tested at three stress levels, 41.2, 112,

and 148 MPa (global coordinate system). These short" term tests are

shown in Figs. 5.19-5.21. The associated master curves are shown in

Fig. 5.22. The master curve is also of the power law shape and is

continuous. The higher two stress level specimens failed at lower
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compliances and do not show up well. These three master curves show

the possibility of nonlinear stress effects, which up to this point

has not been evident. The nonlinear stress effects will be discussed

later.

Shift Factor Function

The temperature shift factors that were calculated by the 'ACS'

program are plotted verses temperature in Figs. S.23-S.28 for all

tested stress levels. These factors tend to follow a linear

relationship which is also drawn in the figures. Shift factor

functions that are commonly used are the WLF (Williams-Landel-Ferry)

equation for temperatures between Tg and I00 ° C above Tg and the

Arrhenius equation for temperatures below Tg. While either the WLF or

Arrhenius equation could have been used, the empirical linear equation

seems to model the shift factor well and is easily used in a numerical

procedure (see chapter 3).

The linear shift function for each of the directions, were

calculated using a least-squares fit giving

Log a = 2.333 - 0.080 T (S.2a)
T

11

Log a = 3.667 - 0.100 T (S.2b)
T

12

Log a = 5.549 - 0.164 T (5.2c)
T
22

Log a = 6.217 - O. lSl T (S.2d)
T

68
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where T is temperature Celsius and a is the shift factor. The
T
lJ

reference temperature, T , for all four compliance terms is 32 ° C.
o

Ideally there should be two independent shift factor functions (SFF)

for a FRP composite, one for the fiber material and one for the resin.

The transverse direction and shear SFF, both resin dominated, are

indeed similar and are within error limits of the experimental data.

However, the fiber and coupling direction SFF are notably different

which may be due to the difficulty in measuring the S compliance.
12

The Arrhenius equation was also calculated for each of the

material properties and is shown in the respective figures (Figs.

5.23-5.26). The activation energy for each of the four material are

42.5, 47.4, 75.8, 64.9 kcal/mole-K for Sll , S12 , S22 , and S88 ,

respectively. Both the S and S shift factor functions are similar
11 12

which is expected since they are both fiber dominated. The S and
22

See are also similar which is expected since they are both resin

dominated. The activation energy for the epoxy for reaction rate and

curing is generally between 15 and 25 kcal/mole-K [116] which is

significantly lower than the value obtained from applying the TTSP.

One point to remember however, is that activation mechanism for curing

and creep is different. The resin is more thermally sensitive than

the fibers and thus the activation energy for creep is also higher

than for the Kevlar fiber dominated compliances, Sil and Si2.

ModellnK the Linear Viscoelastic Response

F_ch of the four master curves were modeled by a power law of the
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form

S = S + mt n (5.3)
0

were m and n are the power law constants and S is the instantaneous
0

compliance. This form was chosen for simplicity and ease of use in a

numerical solution process. If nonlinear stress effects arise, S and
0

m can De modeled as functions of stress. It is generally assumed that

the exponent n is constant.

For linear viscoelastic compliance, the following curves were the

best fit of the experimental master curves.

Sil = [ 10.677 + 2. SlS t°'°4° ] TPa-t

S12 = [ -4.686 - 0.667 t°'°8s ] TPa -I

(5.4a)

(S.4b)

$22 = [ 191.3 + 1.668 t°'27_ ] TPa-1
(S.4c)

$66 = [ 496.6 + 4.109 t°'3°s ] TPa-i (5.4d)

where t is in seconds. These curves are plotted in Figs. 6.6, 6.7,

5.12, 5.13, 5.18, and 6.22 with the master curves to show the fit.

For the SII, S12 and $22 compliance terms, where the nonlinear stress

effects are small, the modeled curve match well with the average of

the master curves, where as the S compliance term, which has a
66

stronger nonlinear stress effect, matches only the lowest stress
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level. The nonlinear analysis will be presented in the next section

to account for the nonlinear stress effects.

Nonlinear Viscoelastic Characterization

Although the master curves were constructed at three or four

stress levels for each compliance term, they could not be used to

determine the nonlinear stress effects since the scatter between each

specimen was on the same order of magnitude as the nonlinear effects.

The only exception to this was the shear compliance which had the high

degree of stress nonlinearity. To reduce the scatter and better

understand the nonlinear stress effects, additional tests become

necessary where the temperature was held constant and the stress

levels were varied on the same sample. It should be noted that a

different specimen for each series of tests at each temperature level

was used. These stress varied tests were done at two or three

temperature levels for each material property. In the following

paragraphs the results of these tests will be presented for each

material property.

The model used for the nonlinear stress effects was a simple

quadratic function for both the elastic and viscoelastic portion of

the power law as explained more fully in chapter 2. The complete

model follows the form

S = S (1+g¢ "z) + m(Z+fo-2)t n (6.6)
0

where S and m are constants determined from the linear viscoelastic
0
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analysis, done in the previous section, and the g and f constants are

determined from the nonlinear viscoelastic analysis. The nonlinear

stress parameter, _, is assumed to be the stress in the direction

associated with the correspondin E compliance. Thus, for the S and
11

$12 terms, the nonlinear stress parameter would be the stress in the

fiber direction, vii' for the particular ply that is of interest.

Likewise, _ is used for S and _ is used for S Another common
22 22 12 66"

nonlinear stress parameter is the matrix octahedral shear stress which

accounts for stress interactions [30]. While this method works well

for S and S it does not work for the S and S which are fiber
22 66 II 12

domlnated. Other models for nonlinear viscoelasticity, such as the

Flndley power law and Schapery Integral equation, have been used with

success by others [26,30,77] however the simplicity and ease of use in

a numerical procedure of the above quadratic model made it the one of

choice for the slight nonlinearity observed with the current system.

For a more complete explanation on stress nonlinear parameters refer

to chapter 2 and 3.

The nonlinear stress analysis in the fiber direction revealed a

slight elastic nonlinearity. Unlike most materials, Kevlar has been

shown to have a small stiffening effect as the load is increased.

This effect was also evident in this study when the stress levels were

increased while the temperature remained the same. FiEure 5.27 and

5.28 show the results of these tests at two temperatures. The slope

creep rate is constant between tests but the creep progressively begin

at a lower compliance level with increasin8 stress level. The lower
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temperature tests, Fig. S.28, does not exhibit as much nonlinear

effect as the higher temperature tests, Fig. 5.27, which might be

expected due to the accelerating effect of temperature. To understand

and model the nonlinear stress effects, each of the individual tests

at each temperature was modeled to a power law where n and m were

fixed at the values established earlier for the linear model

(n = 0.040, m = 10.877 at T = 32 ° C). This allowed only the S or
0 0

the instantaneous compliance to vary and resulted in a series of

decreasing values as the stress increased. These values, normalized

to I are shown in Fig. 5.29. The higher temperature case decreased

even st lower stress levels where as the lower temperature level case

actually increased slightly before decreasing. The slight increase,

less than IX, is thought to be from experimental scatter. While

there is evidences of temperature effect on the nonlinear stress

effect, it was not modeled since there was only two test cases

examined. Also, the nonlinear stress effect is less than 5_ at the

failure stress level. Therefore, the nonlinear stress effect was only

modeled as a function of stress.

The model used was in the form of (I + g_), as mentioned

earlier, and was determined by a less squares fit of the data from

both temperature levels. The nonlinear model is drawn in as a solid

line in Fig. 5.29. To better understand the overall nonlinear effect,

Fig. 5.29 was redrawn to full scale in Fig 5.30. One point to note is

that the maximum stress level tested was only 800 MPa, approximately

66X of ultimate. Higher loads were not possible since the specimens
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would slid in the friction grips, particularly at the elevated

temperature. The other material properties, except $12 did not have

this problem since the ultimate stress, and subsequently the load

carried by friction, was substantially lower. The final nonlinear

viscoelastic model for the fiber direction is

Sn = [ 10.677 (1 - 4.448 x 10 -8 2) + 2.515 t °'°4° ] TPa -t
(5.6)

The coupling compliance, S was similar to the S compliance in
12 11

that only the instantaneous compliance was nonlinear. Figures 5.31

and 5.32 shows the effect of stress for two temperature levels. Like

S the nonlinear stress effect has a stiffening effect which istl

expected since the S compliance is also fiber dominated. However
12

the higher degree of nonlinearity, as much as 20% nonlinear effect at

failure stress, was surprising (see Fig. 5.26) whereas S was only S?.
II

nonlinear at failure stress. The model, (I + g_), to model the

nonlinear effects was fitted to the data and is drawn on Fig 5.33.

The data for both temperature levels agreed surprising well which

indicates no temperature dependence for nonlinear effects. For

reference, the full scale is once again given in Fig. 5.34, which

clearly shows the magnitude of nonlinear stress effects. The final

nonlinear S model is
12

$12 = [ -4.686 (I - 1.764 x I0-7 _2) - 0.667 t°'°86 ] TPa-I
(5.7)

The transverse compliance, $22 , also showed evidences of
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nonlinear stress effects when the temperature was held constant and

the stress level was increased on each individual test. The results

of two such tests are shown in Figs. 5.35 and 6.36. Like the S and
11

S,2 tests, the rate of creep remained fairly constant between tests at

different stress levels which indicates that only the instantaneous

compliance is nonlinear. It should be noted that even the

instantaneous nonlinear effects are small and thus the transverse

compliance could be assumed a linear viscoelastic material property.

This agrees with the conclusions reached by Heil [76] with T900/934

that the transverse direction is linear and only the shear compliance

in nonlinear. Also, the transverse direction is more highly

constrained then the shear in a physical sense, which would limit the

nonlinear stress effects. However, for sake of completeness, the

instantaneous nonlinear stress effect was modeled and the results are

shown in FiE. 6.37 and 5.38. The scatter was large, partly due to the

smallness on the nonlinear effect, but the general trend is evident.

The complete S is modeled as
22

$22 = [ 191.3 (1 + 1.481 x 10 .2 o_2) + 1.668 t o. 271 I TPa -1 (5.8)

The shear compliance showed evidences of large nonlinear stress

effects at high temperature (67 ° C) but none at low temperatures

(40 ° C) as shown in Figs. 5.39 - 5.41. This dependence on temperature

was not fully understood and needs more investigation. For this study

it has been assumed that there is no temperature dependency in the
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nonlinear stress effects, thus allowing the numerical procedures

methods to work. To model the stress nonlinearities only the middle

temperature results was used. Both the instantaneous and viscoelastic

compliances were modeled using (I + E_) and (I + f 2), respectively.

The normalized results are shown in Figs. 6.42-6.46 along with the

model. The complete viscoelastic model for the shear compliance is

S
88 = I 496.6 (1 + 6. 676 x 10 -s 2)

+ 4. 109 (1 + 3. 295 x 10 -4 _) t °'3°s ] TPa-1 (5.9)

The nonlinear viscoelastic constitutive model obtained

experimentally will be used in the numerical procedure to predict the

laminate viscoelastic response. Equations 5.4a-d describing the

temperature effect as well as the viscoelastic models, Eqs. 5.6-5.9

are to be used in the numerical procedure. The following chapter will

compare the numerical predictions and actual experimental tests on

various laminates, including unidirectional, composites.
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Chapter 6

VERIFICATION OF TTSP CHARACTERIZATION

The Kevl ar/epoxy lamina characterization and constitutive

modeling in chapter 5 were based on using short term tests and then

applying the TTSP. Master curves for all four compliance material

properties were obtained in this manner for up to 15 decades of time.

Even though actual creep tests cannot be performed for that length of

time to verify that TTSP can be applied, shorter tests of two to four

weeks are feasible. Through these shorter tests, but still much

longer than the characterization tests (15-25 minutes), the general

trend can be verified. Furthermore these medium length tests can be

done at elevated temperature to insure the tests go through the

glassy/rubbery transition region which was identified for the S and
22

S66 terms. These medium lengths are designed to confirm the

viscoelastic models developed in chapter 5.

A four week test was performed on an unidirectional 0° specimen

made of eight plies. Testing was done on a creep testing machine at

320 ° C using strain gages similar to the short term tests. The creep

compliance, shown in Fig. 6.1, initially is slightly less than the

model predicts but matches the predict ions after the first few

minutes. More important is that the rate of creep (slope of the

compliance curve in log time) is the same. This also agrees with the

results obtained by Horn, et al [83], which are also shown in Fig 6.1.
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The trend or rate of creep is important if the prediction for longer

time sp'hns, such as years, are to be correct.

Unlike the S compliance which has a constant creep rate, the
ll

transverse compliance term, $22, changes rapidly after the first S or

6 decades of time for 32 ° (see Figs. 5.18). In order to better verify

the nonlinear model, medium length tests were done at temperatures

higher than the reference temperature of 32 ° C so that the rapidly

changing portion of the model would be detected. This amounts to

shifting the basic compliance curves to the right so that the start of

the transition region between the glassy and rubbery states will be

evident in the 4 week time span of the actual tests. This does

however, introduce further complications and possible experimental

error due to the temperature and shift factor function dependency.

The two unidirectional, 90 ° specimens were tested at 49 ° C and

66 ° C in a similar fashion as other $22 tests done previously using

strain gages. The results are shown in Figs. 6.2 and 6.3 along with

the predictions. In both cases the actual test results are slightly

lower than the predictions. For reference only, the predictions for

3 ° C _ower temperatures are also shown, which match the actual test

results. This indicates how sensitive the compliance is to small

changes in temperature and how critical the shift factor function is

to the predictions of creep. The agreement between the actual and

predicted compliance for S22 is reasonable especially when considering

the test were done at elevated temperatures and that the temperature

accuracy of the ovens are is ±i ° C.
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The last compliance term that was varied by medium term tests was

the shear compliance, SBB. This test was on unidirectional 10°

specimens at elevated temperature, 49 ° C, to verify the transition or

the higher creep rate region. The results of the test, as shown in

Fig 8.4, are slightly higher over the complete range of the test which

could be attributed to a low shift factor at 49 ° C. However the trend

is the same as the prediction.

The TTSP has been shown to be a reliable and accurate method to

characterize long term properties of fiber reinforced composite

materials. Medium length tests (2-4 weeks) for the creep compliance

of $11 , S22 , and SBB agreed with the predicted compliance based on the

master curve and models obtained from using the TTSP. Although long

term tests have not been done to verify the complete master curve, the

medium length tests confirm the trend for each material property.
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Chapter 7

ACTUAL LAMINATE CREEP RESPONSE VERSUS PREDICTION

The ultimate objective in characterizing and modeling a composite

lamina is to predict the response of laminates constructed from the

lamina. Chapter 3 outlined a numerical procedure to use the lamina

models to predict the general response of any laminate. This chapter

will present the creep test results conducted at various temperatures

and stresses levels for two to four weeks on several laminates

consisting of two, three, and four fiber directions. These results

will be compared to the predicted values obtained from the computer

program VCAP, which uses the numerical procedure presented in

chapter 3 and described in Appendix C.

Two Fiber Direction Laminates

Three different types of two fiber direction laminates were

tested, [±4S]Zs , [30/-6012s , and [lS/-7512s. All three came from the

same basic laminate cross-ply laminate, [90/0]
2s"

The first set of tests were done at elevated temperature, 49 ° C

in order to rigorously check the prediction. By using a test

temperature other than the reference temperature, the numerical

prediction must use both the viscoelastic laminate model and shift

factor function developed for each of the four compliance terms. The

results for the [30/-60] and [lS/-7S] laminates, shown in
2s 2s

220
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Fig. 7.1, agree well with the predictions but the results for the two

[±4S]2s specimens were high at the start and low toward the end of the

test. The beginning discrepancy could be the result of scatter

between specimens, but the reason for the lower creep rate at the end

of the test (2-3 weeks) is not known. Even though the two [i45]
2s

specimens were tested at different stress levels, 10.7 and 13.0 MPa,

nonlinear stress effects were not evident in the actual tests or the

predictions. The strains are in the 0.5% range.

A second set of two tests were performed on the [±4S] type
2s

laminate to better understand the discrepancy between actual and

predicted creep compliance. The tests were done at 32 ° C, the TTSP

reference temperature, using different specimens at about 38 MPa for

each. The results are shown in Fig. 7.2. The agreement between the

actual results and predictions are better than the first set of

[Z4S]2s tests for both the elastic and viscoelastic portions. The two

tests do show some scatter between themselves and the prediction but

it is within expected bounds.

Three Fiber Direction Laminates

A total of six laminates constructed with three different fiber

orientations were tested. The first set of three laminates included

[902/45/-4S] [45 /0/90] and [20 /-25/65] . The tests were
S' 2 S' 2 S

performed at 70 ° C to again insure a rigorously check on the actual

results and prediction comparison. The creep compliance for all three

laminates are shown in Fig. 7.3. The experimental results for the
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[45 /0190] and [20 /-2S/65] laminates match well with the numerical
2 s 2 s

predictions. However, the creep compliance for the [90 /45/-45]
2 s

laminate increases slower than the prediction for the first few

minutes of the test but then increases faster after a day. One

possible explanation for the higher creep at long times is that the

specimen has undergone damage and thus causes a higher creep rate.

However, additional tests done on different [90 /45/-46] laminates at
2 s

49 ° C showed good agreement with predictions, Fig. 7.4, which suggests

that some type of experimental error contributed to the actual and

predicted compliance not matching. While damage certainly can

contribute to creep, this study assumed that the load levels where low

enough not to inflict damage to the test specimens, but in the future

studies damage and its effect on creep should be examined. Another

source of error is the fiber truss problem, (chapter 4) which

theoretically restricts the total creep of a three or more fiber

direction laminate of infinite width. Although I inch wide specimens

were used to minimize the fiber truss effect, higher than predicted

creep rate is possible. One final note, the stress level didn't

effect the creep compliance, Fig. 7.4, as was predicted by the

numerical procedure.

The second of three laminates, consisting of [02/45/-45]s'

[-102/-55/-35] and [-20 /-65/25] were tested at 65 ° C. TheseS' 2 S'

laminates were tested to investigate the effect of off-axis loading on

a typical laminate used in industrM, which is analogous to loading a

[02/45/-45] laminate in the 0 °, I0 °, and 20 ° directions. The resultss
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are shown in Fig. 7. S along with the numerical predictions. As would

he expected, the further off-axis the laminate is loaded, the greater

the cree_ compliance. However the actual tests show the difference

much greater than the numerical procedure predicts. The numerical

predictions indicate that the creep compliance for the [0 /45/-45]
2 s

and [-I02/-5S/-3S] to be nearly equal, however the test results shows

them about 6Z different. This could be due to both specimen

differences and scatter, and from edge effects being greater in the

off-axis specimens. More important, the creep rate is similar for all

three laminates and predictions.

Four Fiber Direction Laminates

The last type of laminates tested were four direction laminates.

The l_minates tested were two [90/-45/45/0] one [10/55/-35/-80]
S P S _

and one [20/65/-25/-70] , which once again simulate off-axis loading
s

effects. All four laminates are classified as quasi-isotropic which

means that the material properties are the same in any direction, if

the material is linear. Since the nonlinear viscoelastic response is

minor for the fiber direction, which is dominant in this type of

laminate, they should also be quasi-isotropic in terms of viscoelastic

response. The test results, Fig. 7.6, show the creep compliance of

all four laminates are indeed similar and the predictions are

identical for all laminates. The experimental results do match the

predictions fairly well, with the exception of same elastic strain

scatter between specimens, and more importantly, the creep rate of all
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laminates matches the prediction.

Nonlinear Stress Effects

Although nonlinear stress effects were modeled for all four

compliance material properties, they were found to be insignificant

except for the shear compliance, See. Even so, it was thought that

the laminates of two or more fiber directions might exhibit some

nonlinear stress effects. In order to identify these effects,

laminates similar to those previously tested, were tested at a series

of stress levels ranging from about S-lO% to 60-70% of ultimate which

corresponds to roughly to 0.1-0.8% strain.. For each series of stress

levels the same specimen was used and the temperature was held

constant. If different specimens were used for each stress level, the

scatter between specimens are enough to make identifying stress

effects impossible since the nonlinear effects are so small. The

length of each test was four to six hours which was longer than the

characterization test but shorter than the long term confirmation

tests discussed earlier in this chapter.

The first type of laminates tested were constructed with two

fiber direction, [30/-6012s and [IS/-7S]2s. Since these laminates

experience significant shear stresses between plies they should be

sensitive to nonlinear stress effects. The results shown in Fig. 7.7

do show a slight stress effect in the actual tests but it is not

dominant. The magnitude of the stress effect is predicted by the

numerical procedure, VCAP, is also shown in Fig. 7.7. The [15/-75]
2s
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laminate aErees with the prediction well for both the compliance value

and for the magnitude. However the compliance for [30/-60] laminate
2s

is higher than predicted and the rate of change is lower. The

magnitude of the stress effects is however close to the predicted

compliance.

The second type of laminates tested for stress effects had fibers

running in three different fiber directions, [20 /-25/65]
2 S'

[45 /0/90] and [90 /45/-45] These laminates were tested at two
2 s' 2 s"

different temperature levels to identify if temperature had an

accelerating effect on the nonlinear stress effects. Different

specimens were used at each of the two temperature levels. Again the

strain levels ranged from 0. I_ to about 0.8Z which is the expected

operating range for these composites in actual applications. The

results for the 49 ° C and 70 ° C are shown in Figs. 7.8 and 7.9

respectively. The nonlinear stress for all laminates at both

temperature levels is minor and what effect is shown could be

considered within experimental error. The predicted nonlinear stress

effect is less than 0. SZ and is not identifiable in the figures. In

conclusion, the nonlinear stress effects are slight or nonexistent in

most laminates. Only the two fiber directions laminates, with their

large shear stress, show any evidence of the nonlinear stress effect.

For both temperatures, the [20 /-25/65] and [45 /0/90]
2 s 2 s

laminates did match well with the predictions for the compliance which

is similar to the long term test presented in the previous sections.

Again, the [902/45/-45] laminate did not match as well at the highs
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temperature but did agree well at the lower temperature.



Chapter 8

SUMMARY,RECOMMENDATIONS,ANDCONCLUSIONS

Summary of Work

This study investigated the thermoviscoelastic characterization

and prediction of Kevlar/epoxy laminates. The work consisted of five

basic areas; the thermoviscoelastic characterization of the four

material properties of a orthotropic composite lamina, the development

of a constitutive model describing the nonlinear viscoelastic

properties, the development of a new numerical procedure to predict

lone term laminate properties without time constraints and numerical

instabilities, the installation of the new numerical procedure into a

microcomputer based program to facilitate ease of use, and the

verification of the accelerated characterization process and numerical

procedure by conducting long term creep tests. All five aspects were

successfully accomplished in this study with the end result being a

user friendly, microcomputer program that can be used by design

engineers in industry to predict thermoviscoelastic properties of

orthotropic composite materials.

A Kevlar/epoxy composite system was examined in this study since

all four materials properties are viscoelastic which is unlike the

previously studied graphite/epoxy composites with only two material

properties viscoelastic. This allowed a more complete study of

viscoelastic response of orthotropic materials and a rigorous check
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for the numerical procedure to predict general laminate response.

The characterization process involved using three types of

unidirectional composite laminates, [0°], [10°], and [90 ° ] to

determined the four independent material properties associated with

FRP composites. An accelerated characterization technique developed

and used previously at VPIgSU [72-82] for graphite/epoxy composite

systems was employed. The technique involved using the Time-

Temperature-Superposition-Principle to construct master curves for up

to i4 decades of time from short term tests of only i6-20 minutes of

length. This technique worked surprising well and the master curves

were subsequently used to model the viscoelastic response of each of

the four material properties. As an added benefit, the TTSP produced

shift factor functions which enabled the model and numerical procedure

to incorporate the effects of temperature. The characterization

process also included nonlinear stress effects on long term

compliance. However, only the shear compliance had any detectable

nonlinear stress effect.

The experimentally developed master curves for creep compliance

were used to develop the constitutive equations. Three types of

models were examined, the Schapery integral, Findley power law and a

newly pr'o:_osed quadratic power law. While all three are basically

empirical functions with equal chances of success, the quadratic power

law was implemented because of its simpler form and for its easier

numerical implementation. Only creep data was used to determine the 5

independent material properties for each compliance term even though
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creep recovery data was available. This study showed that both creep

and creep recovery data can be used equally well in determining the

'n' exponent value of the power law, but the creep recovery method has

a significantly higher standard deviation and is more prone to error.

The nonlinear stress parameter used to describe the stress effects on

the compliance was also examined. While most nonlinear viscoelastic

models use the matrix octahedral shear stress as the nonlinearizing

parameter, this study used the actual stress in the direction of the

desired compliance model since the fibers aer also viscoelastic and

the matrix octahedral shear stress method cannot apply to the fiber

direction compliance.

Originally, this study planned to use a previously developed

numerical algorithm [77] to predict the viscoelastic response of

general laminates. However, due to numerical instabilities and time

limitations, a new procedure was developed. By using a nonlinear

differential equation formulation based on a Kelvin element, a

procedure was developed that is stable for all time step sizes and for

non-positive definite stiffness matrices. In addition, the past

stress and strain history does not need to be stored nor does the

calculation time increase exponentially with each time step, as was

previously the case. This allows very long time spans, i.e. I02°

seconds, to be accurately calculated within computer time restraints.

2ndThe new numerical formulation also uses a order solution technique

which enables higher accuracy.

The most important benefit of the new procedure, with its reduced
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need for computer time, was the ability to program the procedure on a

microcomputer. There are many advantages of having the program run on

an IBM PC type microcomputer, such as portability, ease of use,

inexpensive operation, large installed base, etc. The program, called

'VCAP' (Viscoelastic Composite Analysis Program), incorporates help

screens, graphics, menus, error analysis, and other features which

allow the program to be easily used by industry.

The last part of this study involved verification of the TTSP

acceleration technique and numerical predictions of general laminates

constructed of Kevlar/epoxy. To check the validity of the TTSP, two

to four week long term tests were conducted at various temperatures on

different unidirectional specimens. The compliance curves from these

longer term tests matched well with the results generated using the

TTSP method. In some cases, however, the temperature was shown to

greatly affect the creep compliance curve and thus cause some

differences between TTSP results and actual results. Over a dozen

different laminates, two, three, and four fiber direction types, were

tested for up to four weeks. Overall, the agreement was very good

between the numerical predictions and actual creep test results.

In summary, this study has successfully characterized a

Kevlar/epoxy composite, modeled the thermoviscoelastic properties,

developed a robust numerical procedure to predicting laminate

viscoelastic response, and verified the above accomplishments with

actual laminate creep tests.
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Recommendations

While the objectives of this study were accomplished there are

still a tremendous number of unanswered questions about the

thermoviscoelastic characterization of composite laminates. The most

noticeable deficiency of the this study is the limitations of the

numerical procedure of only being able to predict point stresses and

strains for in-plane loading cases. Work should be done to extend the

procedure to include bending or moment loads and eventually out of

plane loadings. Also, composite structures with non-uniform stress

and strain fields need to be understood. To include these type of

capabilities, the numerical procedure needs to be used in conjunction

with a finite element procedure instead of the using the Classical

Lamination Theory assumptions which currently being done. Although by

using a finite element based procedure, the simple and easy to use

program concept is no longer possible, and a microcomputer and its

advantages can no longer be used.

Moisture, along with adsorption and desorption, needs to be

included in the viscoelastic model since composite are affected by

water in _ similar manner as temperature. Along these same lines, the

effect of temperature and stress variation or cycling on the

viscoelastic properties needs to be better investigated since few

composite structures experience only one temperature a[nd stress level

during its service life.

A large research effort is

understanding damage of composites.

currently being devoted to

This effort needs to be extended
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to the viscoelastic properties. Someof the laminates tested in creep

did not match the predicted creep compliance which could have been

associated with damage. This subject of damage is large and very

complex and will require a long devoted effort.

In conjunction with damage, is the prediction of viscoelastic

failure or time-to-rupture of composites. While this has been

previously studied [78] for graphite/epoxy system with some success,

there is still a tremendous amount of fundamental work to be done to

fully understand when and how failure will occur at extended periods

of time.

This study chose to characterize the unidirectional composite

lamina ard then predict any laminate constructed from lamina layers.

Another and more fundamental approach would be to characterize the

resin and fibers separately and then predict the lamina properties and

eventually the laminate properties. While this approach has been used

for elastic properties, it has not been accomplished for viscoelastic

properties. There are many additional variables at the micro level

that must be considered such as adhesion, debonding, chemical

interdispersion between fibers and matrix, etc, which will make the

task both difficult and challenging.

Conclusions

The composite industry has grown from being an infant who was

unable to support himself, to a teenager, who has a tremendous amount

of unrealized potential but still has a lot of learning to do. The
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lone term material properties of composites need to be better

understood and methods to predict these properties, are vital to the

continued use and growth of these new materials. This study has hoped

to extend man's knowledge and understandin E of composite materials so

that they will be more fully utilized and their true potential can be

reached.
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Appendix A

USER'S GUIDE AND REFERENCE MANUAL TO THE CURVE FITTING (CFIT)

PROGRAM FOR VISCOELASTIC ANALYSIS.

This guide is to be used in conjunction with the CFIT (Curve

Fitting) program that fits various models or curves to experimental

data in an easy and convenient fashion. The program was specifically

designed for fitting experimental data to various nonlinear

viscoelastic models such as the Findley power law and the Schapery

integral models. There are however other general curves that can also

be used, such as exponential, logarithmic, polynomial.

The user can input the data through the keyboard or from a file

on disk. After choosing a particular curve or model the program will

calculate and display the best curve for the data by means of a

least-squared routine for linear curve fits. Nonlinear curve fits are

accomplished by minimizing the error between the calculated curve and

data points. Both the data and calculated curve can be viewed in

graphical form on the screen for visual inspection.

The program was designed to be user friendly and self explanatory

which minimizes the need of a reference manual. The basic structure

of the program is a menu system with three levels; the main, edit and

calculate menus. The program can detect most types of wrong or

illegal data and informs the operator what should be done. The input

choices and options of the program should be easily understood.
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System Requirements and Program Start Up

The program currently will only run on a IBM PC or compatible

computer. The machine must have a Color Graphics Adapter (CGA), at

least 2S6 K memory and an 8087 math co-processor chip.

The distribution disk includes three files, CFIT. EXE, CGA. BGI,

and LITT. CHR. The CFIT. EXE is the executable program code and the

other two files CGA. BGI and LITT. CHR are used by the graphics routines

in the program. Both CGA. BGI and LITT. CHR need to be on the default

drive of the computer system in order for the graphics to work

properly. The default drive (where the graphics programs are found)

can be changed within the program.

To run the program, insert the distribution disk into drive A.

Then type 'A:' and hit the return key (this causes drive A to be the

default drive). Next type the program name 'CFIT' and hit the turn.

The program will carry it from there.

Operations

The program is split into three basic menus; the main, edit, and

calculation menus, which are detailed in Fig. A.I. When the program

is started, an introductory screen will appear, and then the main menu

will be displayed. The main menu is where the user input data is

entered. The menu selection is made by simply hitting the key that is

highlighted in blue on the screen. It can be upper or lower case if a

letter character is needed. Once a selection is made, the program

will prompt the user for input if needed. When prompted for input,
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type in the desired value and hit the return. If just the return is

hit, the current or default value will remain. The input value can be

modified by using the backspace key before the return key is hit.

Main Menu

The main menu selections include Edit, Deflt, Save, New, Graph,

Calc, Quit, and BeepN. 'E' will invoke the edit menu which is

discussed in the following section. 'D' allows the default values for

the x-axis scale, x or y-axis in log form, curve coefficients, and the

graphic or default drive to be changed through a series of questions

will appear on the screen. The x-axis scale pertains to how much of

the fitted curve and data will be shown on the screen during graphing.

The default is 1.2 which means 20% more of the curve past the last

data point in the x-axis direction will be shown. The value must

always be greater than i. The y-axis scale is automatically scaled

and can't be changed. Both the x-axis and y-axis are displayed in

normal or log form depending on if 'y' or 'n' is specified to the

questions 'X Log (Y/N)' and 'Y Log (Y/N)' The default value is 'n',

which means all graphing is done in normal scale. The curve or model

variables can be changed by the user, which overrides the calculated

variables, just before graphing if the 'Change Coef' is answered 'y'.

This allows the operator to adjust manually the fitted curve. The

'Graphic Drive', which tells the program where the graphic routines

are located, is assumed to be the current default drive of the system.

It can changed to any valid drive but both graphic routines, CGA. BCI
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and LITT. CHR, must be present on the new drive.

Returning to the main menu selection, the 'S' command will save

the current data on disk. Similarly the, 'N' command will retrieve

data from disk. Both commands will request the user to specify the

drive end file name to store or retrieve the data. The current

directory of all files will be listed for the drive specified.

The commend 'G' will graph the curve fitting results on the

screen for inspection, however the curve must have been previously

calculated. Both the data and calculated curve will appear on the

curve. The calculation is performed by using the commend 'C' which is

more fully detailed in calculation section. The last commands 'Q'

and 'B' allow the user to exit the program and to turn the beeper on

(BepY) or off (BepN), respectively. The beeper is used to notify the

user when a calculation is done or if there is an error.

Edit M_nu

The edit menu, accessed by pressing 'E' at the main menu, lets

the user change, add, and delete data points that are used in curve

fitting process. The menu has four choices, Delete, Change, NumPts,

and Quit. The 'D' command allows a complete data set, both x and y

value, to be deleted. The user will specify the data set by its

location, in ascending order, which is shown on the screen. If '0' is

inputted, then nothing will be deleted. After deletions, the

remaining data sets are resorted in ascending order for x values.

The 'C' command will step through all data points in ascending
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order, and allows the user to modify one or all of the data points,

both x and y values. In order to add more data points the 'N' command

is used, which asks for the total number of data point sets with a

maximum of SO0 and a minimum of 3. If the number is less than the

current number of points, then only those points up to the new number

are used. If the inputted number is more than the current number then

extra points are added. In either case all points are resorted.

After the number of data points are increased, the 'C' command can be

used to modify the added points. The 'Q' command will return the user

to the main menu.

Calculation Menu

The calculation menu is the heart of the program where the user

chooses which curve is to be fitted to the data. There are currently

14 curve types to chose from which are briefly listed in Table A.I,

along with the command key used to access them. By hitting the key

indicated, the program will request information needed, if any, and

then calculate the best curve by the least-squares method. For the

nonlinear curve fits, the error between calculated curve and data

points is minimized in addition to using the least-squares method for

the linear portion. The results are displayed in the form of an

equation, along with the y mean value, standard deviation, and

coefficient of variation.

The first five curves listed in Table B.I are derived from the

power law of the form
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Table A.I.

Key Name

'I' Power

'2' Power/s

'B' Power/n

'C' Power/mn

D' Power/Yn

5' Recov

E' RecovNL

A' Prony

3' Prony/s

4' Pr_ny/sd

7' Sinh

8' Poly

9' Exp

O' Ln

Curve Types Available in CFIT.

Description

- Power Law with Spring Specified

- Power Law with Free Spring

- Power Law with Exponent Specified

- Power Law with Exponent and Coefficient Specified

- Power Law with Exponent and Spring Specified

- Creep Recovery Curve

- Nonlinear Creep Recovery Curve

- Prony Series

- Prony Series with Free Spring

- Prony Series with Free Spring and Dashpot

- Hyperbolic Sine Curve

- Polynomial Curve

- Exponential Curve

- Natural Logarithm Curve
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n

y = y + mx (A.I)
0

where y , m and n are the curve fit constants that can be calculated
0

by the program and x and y are the data variables. The command 'I'

allows the user to specify y and then the program will give m and n
0

for the best fit. '2' will calculate all three parameters, y , m and
0

n for the given data. 'B' allows the user to specify the exponent n,

'C' lets m and n to be specified, and 'D' allows y and n to be
0

specified with the other parameters calculated by the program.

The 'S' and 'E' commands will fit the data to the following two

similar curves that are used in describing creep recovery and

nonlinear creep recovery data, respectively.

y = a [(I+A) n - A n ] (A. 2)

y = a [(l+bA) n - (bA) n] (A. 3)

where A = (x-xl)/x 1 and x 1 is the starting point for the curve. For

'S', Eq. A. 2, the user must specify x and a range of expect n values,
1

and then the program will calculate a and n values. For 'E', Eq. A. 3,

x 1 and n must be given, and a range of expected b values and then the

a and b will be calculated for the best fit.

Commands 'A', '3', '4', will fit the data to a PDony Series type

curve of the form
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n I e-t/At 1+ _ D l 1 - + ct t = 1,2,3..n (A.4)
Y = Yo t=1

where A is called the relaxation time and n is the total number of

Kelvin elements to be used in the curve fit model, which is specified

by the user. The k are given by the user by specifying the first
t

relaxation time, k1' and then specifying the interval multiple for

each of the following A's. For example, if the user specifies n = 4,

AI = I0, and relaxation interval equal to I0, then A2 = At'lO = I0.I0

= I00, k = A .i0 = 1,000, and _ = I0,000. For 'A', the program will
3 2 4

= c = O. For '3' D and y are
calculate only the D! with Yo ! o

calculated with c = O. For '4' all parameters, Di, Yo and c, are

calculated by the program.

The '7' command will fit the data to a hyperbolic sine curve of

the form

y = a.sinh(x/b) (A.S)

where a and b are the calculated parameters. The '8' will calculate

any degree of polyn<mial equation desired to the data. The equation

form is

n
y = C + C x + C x 2 + ...... + C x (A.6)

o 1 2 n

where n is called 'the number of terms' in the program and must be

specified by the user and C i are the coefficients that are calculated.

Th_ remaining two curves, Exp and Ln, ('9' and '0' respectively)
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are of the form

bx

y = a.e (A.7)

y = a + b.Ln(x) (A.8)

with a and b the curve parameters determined by the program. The last

option is 'Q' which allows the user to exit and return to the main

menu.



Appendix B

BACKWARD TRAPEZOIDAL METHOD

In chapter 3 the Backward Euler Method was used in solving the

nonlinear viscoelastic problem of orthotropic composite laminates and

a detail derivation was given. The Backward Trapezoidal Method (BTM)

will be briefly developed in this appendix.

Recall the basic differential equation, Eq. S.8, of a single

Kelvin element

4

ki lJ

q=l

Dqij] ckl kl i ]

kl lJ _t I

(B.i)

where c and c are the strain rate and strain, respectively,
kl lJ kl lJ

is the stress in each Kelvin element, ,, ply, k, compliance
kl lJ

direction, q, and rotated position, (i,j). Using the BTM the

numerical approximation becomes

C - E t+l klCiJ
kl iJ kl tJ = _1 __1 lj o"

At 2 kl ij h 1
q=l

t kl lJ

q=l

(B.2)

where At is the time step size, t+l is the new time and t is the old
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time. This can be rewritten as

4
t÷l h _ t+l h

- L D • _ +kl lJ 2_ +h kl qiJ kl iJ 2_ +h
1 q=l 1

2k -h
I t

+
2k +h k,eli

I

4

tD • o"
kl qij kl iJ

q=l

(B3)

where h = At. When the

(Eq. 5.10) Eq A.3 becomes

nonlinear stress function is included

t+l h
C

kl l] 2k +h
I

4

_ D • o't+l*/ ( ¢rt+l ) +
kl qlJ kl lJ q k

q=l

+

4 2k -h

h _ D . crt • fq( o t ) + I • t2A +h kl qiJ kl |J k 2k +h klCi]
I q=l

(B.4)

This can be further simplified as

ct+l = Z [ .fq( o-t+l)]. CrTM E tkl i klCqiJ k k J 4- kl i J

q=l

4

Z[ k] tE t = C .[ t) _ +
where kl I] kl qlJ q k J

q= 1

2A -h
I

2k +h

(B.5)

t
• C
kl lJ

h
C - • D

kl qiJ (2k +h) kl q! J
1

t+l t+l
O" = O"

k ] kl lJ
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Summing all the creep strains together for each element in the series

of Kelvin element will give, similar to BEM,

t+t _, _ +l) . + (B 6)
ce = C • t+i E t
k ! kl qlj k ] kl t]

J=l 1=1 q=l

From this point the derivation is the same as the BEM. As with the

BEM, the BTM is unconditionally stable for all time steps. It is a

second order method which will be more accurate than the BEM.



Appendix C

USER'SGUIDEANDREFERENCEMANUALTOTHEVISCOELASTICCOMPOSITE

ANALYSISPROGRAM(VCAP)

This manual is to be used in conjunction with 'VCAP'

(Viscoelastic Composite Analysis Program) which was written to help

design engineers predict viscoelastic response of any general

laminate. The program allows the user to specify the laminate layup,

in-plane loads or stresses, and the time span of the analysis. The

program requires the user to supply the lamina material properties

that make up the laminate. However, there are three materials

(graphite/epoxy T300/934 and T300/_280, and Kevlar/epoxy

Ke 49/Fiberite 7714A) that have been characterized at Virginia

Polytechnic Institute and State University and are included as default

materials properties in the program.

The output will be the in-plane stresses and strains in the

global or local ply coordinate system as well as the compliance in the

load direction. This information can be viewed immediately in table

or graph form, or saved to disk for later viewing and editing.

The program was designed to be user friendly and self explanatory

which minimizes the need of a reference manual. The basic structure

of the program is a menu system with three levels, the main, edit and

output menus. The program can detect most types of wrong or illegal

data and informs the operator what should be done. The input choices

266
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and options of the program should be understood to someone involved

with viscoelastic composite analysis with only minimal need of this

reference.

System Requirements and Program Start Up

The program currently will only run on a IBM PC or compatible

computer. The machine must have a Color Graphics Adapter (CCA), at

least S12 K memory and an 8087 math co-processor chip.

The distribution disk includes three files, VCAP. EXE, CGA. BCI,

and LITT. CHR. The VCAP. EXE is the executable program code and the

other two files CGA. BGI and LITT. CHR are used by the graphics routines

in the VCAP program. Both CCA. BCI and LITT. CHR need to be on the

default drive of the computer system in order for the graphics to work

properly. The default drive can be changed within the program.

To run the program, insert the distribution disk into drive A.

Then type 'A:' and hit the return (this causes drive A to be the

default drive). Next type the program name 'VCAP' and hit the return.

The program will carry it from there.

OPerations

The program is split into three basic menus; the main, edit, and

output menus, which are detailed in Fig. C.I. When the program is

started, two introductory screens will appear, and then the main menu

will be displayed. A menu selection is made by simply hitting the key

that is highlighted in blue on the screen. It can be upper or lower
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case if a letter character is needed. Once a selection is made, the

program will prompt the user for input if needed. When prompted for

input, type in the desired value and hit the return. If just the

return is hit, the current or default value will remain. The input

value can be modified by using the backspace key before the return key

is hit.

Main Menu

The main menu selections include Edit, Load, Time, Ply, Calc,

Output, Quit, PrtN, and BepY. 'E' will invoke the edit menu which is

discussed in the following section. 'L' allows the in-plane stresses

to be modified. 'T' allows the start time, the number of steps per

decade, and the total number of decades to be specified. The minimum

and maximum for the steps per decade is 5 and I0 respectively. The

maximum total decades is 22. 'P' allows the laminate layup to be

changed. The number of plies can range from 1 to 6. The angle is

restricted to >= -90 ° and <= 90 ° and the thickness must be <= 999.9.

'C' Begins the actual calculation process. The time required for an

analysis depends of the number of plies and the total number of

decades desired. An analysis of a 2 ply laminate for 6 decades takes

about one minute and for a 6 ply laminate for 22 decades it takes

about one hour. 'O' allows the results to be viewed 6r saved to disk

as explained in the output section. 'Q' quits the program and takes

the user back to the DOS level. 'R' activates the printer (PrtY) to

receive intermediate results as the program does the calculations.
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'B' turns the beeper on (BepY) or off (BepN). The beeper is used to

notify the user whena calculation is done or if there is an error.

Edit Menu

The edit menu lets the user change the material properties of the

basic lamina. The user can enter the Prony series coefficients and

relaxation times directly or use a power law based model such as the

Schapery or Findley model. If a power law model is input, then the

program will generate the Prony series which is needed to perform the

analysis.

The selections for the edit menu include ChKel, NoKel, Units-SI

or Units-Eng, Euler or EulMod, PowCv, ShFac, ReCalcP, Quit,

I:Ke/7714A, 2:T300/934, and 3:T300/5208. 'C' allows the user to

directly input the Prony series coefficients and relaxation times

directly for each of the four material properties. The relaxation

times will be the same for each of the basic four directions or

material properties as dictated by the program algorithm. 'N' lets

the user change the total number of Kelvin elements or Prony series

terms to be included. This only applies for the Prony series input by

the user and not for the power law generated Prony series. 'U' will

switch between SI and English which specifies the units and format on

input 8nd output screens. 'E' allows the user to switch between two

solution techniques, Euler and EuiMed. The Euler stands for the

Backward or Implicit Euler method and EulMed stands for the Modified

Backward Euler Method. The Euler is a first order solution technique
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and EulMod is a second order. The EulMod takes slightly more time but

is also slightly more accurate.

'P' allows the user to specify the type of viscoelastic model to

be used and its coefficient parameters. Currently there are three

choices for models, the Schapery, Findley, and quadratic. The

Schapery model used is in the form of

glg2Ct n
S=gS + (C.I)

o o n
a
O"

which requires So, m, n, go, gl' g2' and a_ paraJneters to be

specified. So, m and n are constants and go' g1' g2' and a_ are

nonlinear stress functions.
The go' g1' and g2 functions are assumed

to be a bilinear functions of the form

gt = 1 for 0 _ ¢ s b

gt = 1 + a(_-b) for b <

where a and b are user input constants. The bilinear

function is graphically shown in Fig. C.2. The constant b

and a represent the stress level at which nonlinear effects

begin and its rate, respectively. The a functions has a

exponential form

a = 1 for 0 -_ _ s b
T

a(¢-b)
a = e for b <

T

(C.2a)

(C.2b}

(C.3a)

(C.3b)
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where again b is the stress level at which the nonlinear stress

effects begin and a is a type of rate constant for the nonlinear

effects. The exponential form restricts aT from becoming negative or

zero. Figure C.3 shows an example of a typical a nonlinear stress
T

funct ion.

For the Findley model,

So sinh[+l + m sinh[+ 1 tn (C.4)S- _ -7

there are five parameters, S , m, n, g, and f, all constants, that the
0

user must specify for each of the four material properties. The

parameters f and g are the nonlinearizing terms in the hyperbolic sine

function. The term _ is the current nonlinear stress parameter.

The simplest model is the quadratic model of the form

S=So 21+m[x+f:]tn Cc.s)

Like the Findley model there are five parameters that need to be

specified, S , m, n, g, and f, where v is the current nonlinear stress
0

parameter.

In addition to basic models, the user must specify the current

nonlinear

compliance.

parameter,

combination of stresses in the matrix,

stress parameter, v, for calculating the nonlinear

There are two options, the matrix octahedral shear stress

and actual stress. The matrix octahedral stress is a

both transverse and shear
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directions which is used to calculate the $22 and Sss compliance

terms. For the S and S terms, the actual stress in the fiber
11 12

direction is used. If the octahedral option is chosen, then the

matrix Poisson's ratio must also be specified. For the second option,

actual stress, the stress in a particular direction is used to

calculate that direction compliance, i.e., the fiber direction stress,

_1' is used for the SII and $12 terms, transverse fiber stress, _, is

used for the S term, and the shear stress, _ is used to the S
22 12 66

term.

'S' allows the user to specify the temperature and the

temperature shift factor functions. The temperature is assumed to be

in degree celsius. There are three shift factor functions currently

available: a linear equation, the Williams-Landel-Ferry equation, and

the Arrhenius equation. The user needs to input the constants that

correspond to a particular model. If the shift factor function is

unknown then the user can input zeros for all constants and no

shifting will take place.

There are currently three composite materials and their

properties, stored in the program. These materials have been tested

and modeled at Virginia Polytechnic Institute and State University and

can be accessed by the user by hitting the 'I', '2', or '3' number

key. The first material, tested and characterized by Gramoll!

IGramoll, K.C., D.A. Dillard and H.F. Brinson, 'lThermoviscoelastic

Characterization and Prediction of Kevlar/Epoxy Composite Laminates,"
Conf Proc 9 th Symposium on Composite Materials: Testing and Design,

Reno, Nevada, April, 1988.
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(accessed by key '1'), is made from Kevlar 49 and 7714A Fiberite

epoxy. The Kevlar/epoxy data has shift factor functions, used for

temperature effects, which are automatically loaded with the material

properties. The second material, key '2', is graphite T300/934 epoxy

composite system that was tested and analyzed by Griffith and

Dillard 2. The last material system available is graphite T300/5208

epoxy that was characterized by Turtle 3. There are no shift factor

function available for either graphite/epoxy material system.

'R' will recalculate the Prony series from the user entered

model. The Prony series should be recalculated after all changes to

the model and shift factor function parameters have been completed.

The program uses the Prony series and not the power law models in its

analysis. The number of terms in the series that are calculated

depends on the number of decades the analysis is to be performed,

which is specified in the main menuunder 'Time'. 'Q' will return the

user back to the main menu.

Output Menu

The output menu is accessed through the main menu. The user can

view the analysis results in table form or in graph form. The options

in the menu are Comp, EpsG, SigG, EpsL, SigL, TauOct, WtFile, RdFile,

2Dillard, D.A., D.H. Morris and H.F. Brinson, "Creep and Creep Rupture

of Laminated Graphite/Epoxy Composites", VPI&SU Report VPI-E-81-3,

March 1981.

3Tuttle, M.E. and H.F. Brinson, "Accelerated Viscoelastic

Characterization of T300/5208 Graphite-Epoxy Laminates", VPI&SU Report

VPI-E-84-9, March 1984.
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and Quit. The following gives a brief description of each command

C' Compliance in the load direction only

I' Strain in the global coordinate system (laminate)

2' Stress in the global coordinate system (laminate)

3' Strain in the local coordinate system (lamina or ply)

4' Stress in the local coordinate system (lamina or ply)

T' Matrix octahedral shear stress in each ply

For each of the above choices, the results will be shown in table

form. The information can be scrolled up and down, and if there is

multiple plies, it can be scrolled sideways between plies, by using

the arrow keys. The data can be graphed by hitting 'G'. After the

graphing the table form reappear. There are two possible options in

the graphing, material property direction (I to 4) and if all plies

will be graphed together or separately. To return to the basic output

menujust hit 'E' for Exit.

The other options on the output menu are WtFile and RdFile.

These commandsallow the user to write the results to disk or to read

a previously saved result back into the program for viewing and

graphing. The file is written in ASCII format which allows it to be

accessed by almost all other work processing, spread sheet, and

graphing program packages. A third commandon this menu is DefDrv

which allows the user to change the default drive where the graph

drivers are located.



Appendix D

USER'SGUIDEANDTECHNICALREPORTFORTHEAUTOMATEDCURVE

SHIFTING(ACS)PROGRAM

The computer program, Automated Curve Shifting (ACS), was

develcped for automating the curve shifting process that is used in

manyengineering applications. The basic concept is the shifting of

multiple curves horizontally to form a single curve. Figure D. la

shows this concept for a horizontal shifting process and how a new

master curve can be formed. Curve shifting by hand is a time

consuming and tedious job, which requires curves to be shifted by

trial and error. One area of engineering that curve shifting is used

extensively is polymer science, which uses the Time-Temperature-

Superposition-Principle (TTSP) relating temperature and time. This

allows long-term mechanical response of polymer materials to be

deduced from short-term test results through the curve shifting of

different temperature level tests.

The program described in this report has the ability to shift up

to 30 curves of 54 data points each to construct a single master

curve. The user can override the automatic shifting and manually

input the shift factors for each curve. In both cases the results can

be viewed and graphed on the computer screen. The program has the

ability to read data from a disk file or let the user enter the data

through the program's editor. The data can be viewed and edited at
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any time while the program is running.

for later use and reference.

for user-friendliness and

explanatory and menu driven.

The data can be saved to disk

The overall design of the program was

ease of use. The program is self

There is error checking and reporting to

help the user understand any mistakes.

The sections that follow are mainly for reference only and are

not necessary to operate the program. The first section describes the

method of solution and the algorithm used to automate the curve

shifting process and the second section explains the overall operation

and use of the program ACS along with its limitations.

Shifting Method and Algorithm

The basic idea of curve shifting is to match a series of curves,

one on top of another, to form a new curve called a master curve.

Although the master curve is actually made up of many shorter,

over-lapping curves it should resemble a single curve with a minimum

of projections from the individual curves. The objective of curve

shifting is to find the best shift factor, aT, between any two

overlapping curves that allows the two curves to lay on top of one

another with a minimum misalignment (Fig. D. ib). A human is able to

discern any misalignment quickly through visual inspections but a

numerical method is necessary in order for a computer to perform this

same task. Thus, in order to automate this curve shifting process, an

algorithm must first be developed.

One method to minimize any misalignment between curves is based
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on minimizing the area between the two respective curves. Figures D. 2

and D.3 show two methods to calculate the area between any two over

lapping curves which can be easily implemented on a computer. The

first method, called x-axis method, is to find the area between the

overlapping section of each curve and the x-axis as shown in Fig. D.2

and then take the absolute difference between each area. If A x and A x
I 2

are the respective areas, then the basic objective function to be

minimized would be

Minimize ] A x -- A x2 ] (D. 1)

Similarly, the second method, called the y-axis method, finds the area

between two curves by taking the absolute difference between the

respective curves and the y-axis (Fig. D.3). The objective function

becomes

Minimize ] Ay -- Ay [ (D.2)
1 2

Although the x-axis and y-axis methods are similar in

implementation for any two overlapping curves, the y-axis method is

unconditionally stable whereas the x-axis method is not. The unstable

condition for x-axis method is due to having two minimums for equation

(D.I). The first minimum, and the one desired, occurs when the two

curves are closely aligned. However a second minimum occurs when

curve 2 is shifted past the last point on curve 1 causing Eq. D. 1 to

become O. Although this over-shifting of the second curve past the

first curve happens rarely, the possibility still exists and has
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happened on test cases. The y-axis method does not suffer from this

double minimum problem regardless of how far the curves are shifted.

It should be noted that both methods do not give the same exact

shift value for the same curves. The x-axis method will always give a

higher value than the y-axis method. However the difference between

the two values is less than I% for actual TTSP curves and if the

difference is greater than 2-3Z then the shiftability of the curves is

in question.

P_cause of the stability problem of the x-axis method, the y-axis

method was chosen to be used in the 'ACS' program. In all test cases

the y-axis method gave excellent shift factors and matched those

obtained by other graphical methods.

The trapezoidal rule was used in calculating the areas between

the overlapping curves and the y-axis. The curves are not continuous

functions but a collection of data points and when the word 'curve' is

used it refers to the data points. In all calculations the data

points are used in calculating and minimizing areas. When an end

point of one curve does not coincide with a data point in the

over-lapping curve, then linear interpolation is used to obtain a new

data point. This new point is needed at each end of the over-lapping

curves in order to use the trapezoidal rule at the end points.

The Bracketing and Golden Section methods I were used together to

find the minimum area difference between the curves to be shifted.

1Haftka, R.T. and Kamat, M.P., Elements of Structural Optimization,

Martinu_ Nijhoff Publ., Boston, 1986, pp 84.
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The Bracketing method starts with the shift factor, aT, at zero and

then marches in a geometric manner in the positive direction until the

minimum is bracketed. After the minimum is bracketed then the Golden

Section search method is used to approach the minimum. When any two

successive aT values are less than I0 -s apart, then the search is

terminated. The Golden Search method is very similar to the Bisection

method but converges more rapidly. A flow chart showing this

procedure is given in Fig. D.4.

One limitation of the algorithm used is its restriction to

positive shift factors, i.e. curves can only be shifted right.

Another limitation is only positive data points can be used. This is

due to the x-axis being converted to log scale which then prohibits

any negative numbers. Also note that the algorithm assumes the

objective function being minimized is unimodal, or that is has only

one minimum. Although a well behaved set of shiftable curves are

unimodal, there might be more than one minimum if there is scatter in

the data. However, even with uneven data the multiple minimums that

might be present would be very closely spaced and the value for a for
T

each of these minimums would be nearly the same.

Program 'ACS' Program Description and Use

The Automated Curve Shifting (ACS) computer program was designed

to aid the engineer or scientist in shifting multiple curves to obtain

a master curve without using the time consuming and tedious graphical

method. Since curve shifting is empirical in nature and that there is
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more than one possible curve shifting method, any values obtained from

ACS should be only as a starting point in deriving a shift factor

function. The program itself is designed to be self explanatory and

user feiendly so that anybody could use it with a minimum knowledge of

computers. ACS uses menus to guide the user through all aspects of

the program. The data can be read from disk or input directly through

the keyboard. The automated shifting capabilities can be overridden by

the user and all results can be viewed in graphical form.

The basic procedure to use the program is input data, calculate

the shift factors for each curve and then visually view the results.

However, to help the user to accomplish those basic three tasks, there

are other options available. Figure D.5 shows the main menu and

submenu selections that are possible. The following paragraphs will

explain each option and menu selections along with their limitations.

Each command is chosen by hitting the letter of the command or the

blue highlighted letter.

The 'Retrieve' function allows the user to import a data file on

disk that is written in ASCII format. The program will first ask for

the disk drive letter were the data file is stored and will then

display all current files on that disk to aid the user in choosing the

proper data file. The user will then type the desired file name and

hit return. If no name is entered then the default file, called

'MAT. DAT', will be retrieved. Data files can be constructed from the

'Edit' and 'Save' commands in this program or from any word processor

or editor. However, the data must be in the format shown in Table
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D. I, however the column positions are not critical. The maximum

number of curves that can be fitted at one time is 30 and the maximum

number of data points permitted per curve is 54.

Table D. 1

Actual File

3

4

10 20

100 30

200 40

500 50
3

10 25

100 38

200 50

3

10 28

100 40

200 65

Sample Data File Format (Column Not Critical).

Comments

+-- number curves (30 max)

+-- number of data points in Ist curve (54 max)

<---Ist data point in Ist curve

+-- 2nd data point in Ist curve

+-- 3rd data point in Ist curve

+-- 4th data point in Ist curve

+-- number of data points in 2nd curve

6-- Ist data point in 2nd curve

+-- 2nd data point in 2nd curve

+-- 3rd data point in 2nd curve

+-- number of data points in 3rd curve

+-- ist data point in 3rd curve

+-- 2nd data point in 3rd curve

+-- 3rd data point in 3rd curve

The 'Save' command is the opposite of the 'Retrieve' command.

All data that is currently being used in the program will be saved on

disk in ASCII format. The program will ask what disk drive will to be

used and the name of the data file. If no name is given, then the

default name of 'MAT. DAT' will be used.

The user can enter new data or change existing data with the

'Edit' command. A submenu of editor commands will appear at the

bottom of the screen. At the top of the screen the current curve

number and the total number of curves is shown. In the submenu, the

'Next' and 'Previous' commands allow the user to page through the
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individual curves, until the desired curve appears. Each time these

two commands are used the screen is rewritten with the new curve data.

All editing will be done only on the current curve. To change the

value of any data point, use the 'Change' command. The program will

highlight each data point in sequence and allows the user to change

the value. However, only positive values can be used. To get out of

the change mode, simply go through all data points and a_Cter the last

point, the program will automatically exit. The data will be

automatically sorted by the x data value so that the lowest value will

be first the largest will be last.

The 'Erase' command in the 'Edit' submenu allows the user to

delete an_" particular data point in the current curve data file or to

delete complete curves. Upon using this command, a second submenu

will appear with three entries, 'Point', 'Curve', and 'Return'. If

'Point' is used, the program will ask which data point of the current

curve should be deleted. If there is no point to be erased then enter

O, which allows the user to escape. The number of the data point to

be deleted must be greater or equal to 0 and not more than the total

number of data points. If there are only two data points then the

program will not permit any data points to be deleted. The 'Curve'

command asks the user which curve should be deleted. Again 0 means

delete no curves and the curve number must be a positive integer and

not more than the total number of curves. Also if there are only two

curve files, then no curve can be deleted. 'Return' simply returns

the user to the 'Edit' submenu.
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The remainder of the commandsin the 'Edit' submenuare 'Data

Points', 'Total Curves', and 'Return'. To change the total number of

data points in the current curve use 'Data Points' commandand to

change the total number of curves use 'Total Curves' In both cases

the program will display the old number and request the new number.

The program does not actually erase any data if the number of data

points or curves are reduced but just ignores the data. Thus, the

user can change back to the original number of data points or curves

and retrieve any data. The 'Return' will place the user back to the

main menu.

Back to the main menu, the 'Calc' command will begin the

automatic curve shifting routine for all curves. This procedure will

take about IS seconds for each curve to be shifted, assuming that the

8087 co-processor chip is installed. The results will be displayed as

the calculation precedes. The program only shifts curves right or in

the positive direction. In other words there is no negative shift

values allowed in the calculation process. If the minimization

process takes more than I00 iterations then an error message will be

displayed and the automatic shifting process will be stopped. The

'Manual' command allows the user to change the shift factors or input

new ones. It will accept negative values but care needs to be used

since the graphing is in log time.

The 'Graph' command is used to graph the results of the program

and to visually examine the results. The user will specify the first

curve and the last curve of any group of sequential curves to be
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graphed. The default will graph curve I through the total number of

curves. The user can request a hard copy to be printed on any Epson

RX, FX or IBM Graphics printer. The current programs supports only

the Color Graphics Adapter (CGA) type of color monitor. The last

command 'Quit' will exit the program.

Comments and Conclusions

This program was designed as a tool to aid the engineer and

scientist in curve shifting and developing master curves by automating

the process. The program automatically shifts curves by minimizing

the area difference between the two curves. The program is written to

be user friendly and easy to use. The data can be input by the user

through the program*s editor or can be read in directly from disk. In

both cases the data can be changed and edited within the program. The

results can be graphed immediately on the screen for inspections and

adjustment by the user. The maximum number of curves that can be

shifted at one time is 30 and each curve can have up to 54 data

points.

The shifting algorithm used minimizes the area difference between

the over lapping portions of any two curves. The minimum is located

first by the Bracketing method and the refined by using the Golden

Section Search method. Each curve is shifted to the right of the

previous curve. This method is empirically based and thus care should

be taken with the results and should be checked graphically.
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